|

楼主 |
发表于 2020-10-27 04:24
|
显示全部楼层
原题没有天山草老师的精彩, 结果也比较简单, 供参考:
记 \(F(y):={\small\displaystyle\int_0^y}\sqrt{x^4 + y^2 (1 - y)^2} dx\). 我们有
\(\displaystyle{\small\frac{dF(y)}{dy} =}\sqrt{y^4 + y^2(1-y)^2} + y(1-y)(1 - 2y){\small\int_0^y\frac{1}{\sqrt{x^4 + y^2 (1 - y)^2}}} dx\).
因\(\;y\in (0, 1),\displaystyle{\small\int_0^y\frac{1}{\sqrt{x^4 + y^2 (1 - y)^2}}} dx\in\big(0,{\small\frac{y}{y(1 - y)}}\big)\),上式第二项的绝对
值不大于\(y|1-2y|\le y\sqrt{(1-2y)^2+2y(1-y)}=\sqrt{y^4+y^2(1-y)^2}.\;\)
故\(\,\small\dfrac{dF(y)}{dy}> 0\;(y\in[0,1])\),可见所求最大值为\(\,F(1)=\large\frac{1}{3}.\small\quad\square\)
|
|