|
本帖最后由 elim 于 2020-12-13 17:03 编辑
\(\because (a^x)'=a^x\ln a,\;\therefore\;{\large\frac{d}{ds}(\frac{1}{n})^s}={\large(\frac{1}{n})^s}\ln{\large\frac{1}{n}}=-\large\frac{\ln n}{n^s}\)
对\(\,\small\sigma\in(1,2),\,\)有\(\small\;\,\displaystyle\sum_{n=1}^{\infty}\frac{\ln n}{n^{\sigma}}<\infty,\;\frac{1}{n^s}<\frac{\ln n}{n^s}<\frac{\ln n}{n^{\sigma}}\;(n>3,\,s>\sigma).\)
据 Weierstrass 判别法, \(\small-\zeta'(s)=\displaystyle\sum_{n=1}^{\infty}\frac{\ln n}{n^s}\;(s>1)\) |
|