数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 5980|回复: 10

试证 (0,+∞) 上的广义定积分 ∫(0,+∞)e^(-x)lnx dx=-γ

[复制链接]
发表于 2021-1-11 04:06 | 显示全部楼层 |阅读模式
题:试证\(\,\displaystyle\int_0^{\infty}e^{-x}\ln x\,\text{d}x=-\gamma\)

提示:令\(\,\Psi(x)=\large\frac{\Gamma\ '(x)}{\Gamma(x)},\) 则
\(\begin{align}
{\int_{0}^{\infty}e^{-x}\ln x \,d x}&=
\lim_{\mu \to 0^+}\frac{d}{d\mu}\int_{0}^{\infty}x^{\mu} e^{-x}\,d x=\lim_{\mu \to 0^+}\frac{d}{d\mu}{\Gamma(\mu + 1)}\\
&=\lim_{\mu \to 0^+}\Gamma(\mu + 1)\Psi(\mu + 1)=\Gamma(1)\Psi(1)=-
\color{red}{\large \gamma}\end{align}\)
 楼主| 发表于 2021-1-11 08:47 | 显示全部楼层
第一个等号需要证明,\(\Psi(1)=-\gamma\,\)需要证明.
回复 支持 反对

使用道具 举报

发表于 2021-1-17 10:19 | 显示全部楼层
是[0,+∞) ,不是(0,+∞) ,老师这个区间都能写错,笔误???

点评

这对积分没有区别.应该学会讨厌这种念经作风  发表于 2021-1-17 13:31
回复 支持 反对

使用道具 举报

发表于 2021-1-17 14:42 | 显示全部楼层
本帖最后由 永远 于 2021-1-17 14:49 编辑

什么叫念经作风?区别可大了,好吧,老师你率性不拘一格还好老师你不是搞飞行器设计,不然会被你害惨了。我上小学的时候听说前苏联航天部门轨道飞船因少输入一个小数点,导致后期飞船后期失控……算了,不在和老师你纠结了。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-1-17 16:26 | 显示全部楼层
不求甚解,念经有口无心,逐成混混.可惜了.
回复 支持 反对

使用道具 举报

发表于 2021-1-17 17:33 | 显示全部楼层
elim 发表于 2021-1-17 16:26
不求甚解,念经有口无心,逐成混混.可惜了.

不管e老师怎么骂,只要陆老师一天不回贴,我是不会承认的。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-1-17 18:02 | 显示全部楼层
你的承认谁承认?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-1-19 01:13 | 显示全部楼层
永远弄不懂 \(\int_{[a,b)}=\int_{(a,b)}\) 有点恐怖.
回复 支持 反对

使用道具 举报

发表于 2021-1-19 08:04 | 显示全部楼层
elim 发表于 2021-1-19 01:13
永远弄不懂 \(\int_{[a,b)}=\int_{(a,b)}\) 有点恐怖.

还有这种操作,第一次听说,课本上有吗
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-1-19 08:13 | 显示全部楼层
永远 发表于 2021-1-18 17:04
还有这种操作,第一次听说,课本上有吗

其实所有的瑕积分都是这种东西。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-18 20:48 , Processed in 0.090573 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表