数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 5114|回复: 7

x,y 为实数,已知 y^2≥1 ,[√(1+x^2)-x][y-√(y^2-1)]=1 ,求 x^2-y^2

[复制链接]
发表于 2021-2-18 17:04 | 显示全部楼层 |阅读模式
請問代數

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2021-2-18 20:47 | 显示全部楼层
平方差公式

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

点评

謝謝老師  发表于 2021-2-19 02:12
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-2-18 21:27 | 显示全部楼层

請問底下

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

发表于 2021-2-18 23:11 | 显示全部楼层
楼上 liangchuxu 的解法思路很好!下面是根据这一思路的详细解答过程:




本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

点评

謝謝老師 109 新竹 能  发表于 2021-2-19 02:11
回复 支持 反对

使用道具 举报

发表于 2021-2-20 08:28 | 显示全部楼层
另一个思路:亦可由[√(1+x^2)-x][y-√(y^2-1)]=1,令√(1+x^2)-x=a,则y-√(y^2-1)=1/a。

易解得,x=1/(2a)-a/2,y=1/(2a)+a/2。所以,x^2-y^2=[1/(2a)-a/2]^2-[1/(2a)+a/2]^2=-1。

回复 支持 反对

使用道具 举报

发表于 2021-2-20 09:05 | 显示全部楼层
楼上 波斯猫猫 的解答也很好!已收藏。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-9-12 15:14 , Processed in 0.094161 second(s), 17 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表