|
\(记∠EFB=a,\ ∠EBF=b,\ ∠EDF=c,\ H为AE,BD的交点。\ 由下解得b=c,\ 即BCGD共圆。\)
\(1=\frac{\sin∠HAD\sin∠HBA\sin∠HEB\sin∠HDE}{\sin∠HAB\sin∠HBE\sin∠HED\sin∠HDA}
=\frac{\sin(a)\sin(60^\circ)\sin(a+b)\sin(60^\circ)}{\sin(60^\circ-a)\sin(60^\circ-b)\sin(60^\circ-a)\sin(60^\circ)}\)
\(1=\frac{\sin∠HAD\sin∠HBA\sin∠HFB\sin∠HDF}{\sin∠HAB\sin∠HBF\sin∠HFD\sin∠HDA}
=\frac{\sin(a)\sin(60^\circ)\sin(a)\sin(60^\circ+c)}{\sin(60^\circ-a)\sin(60^\circ)\sin(60^\circ-a-c)\sin(60^\circ)}\) |
|