数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 2784|回复: 7

神仙难钓中午鱼!

[复制链接]
发表于 2022-5-8 07:22 | 显示全部楼层 |阅读模式
神仙难钓中午鱼!
 楼主| 发表于 2022-5-8 07:23 | 显示全部楼层
每个大于等于9的奇数都是3+两个奇素数之和
崔坤
中国青岛即墨,266200,E-mail:cwkzq@126.com
摘要: 数学家刘建亚在《哥德巴赫猜想与潘承洞》中说:“我们可以把这个问题反过来思考, 已知奇数N可以表成三个素数之和, 假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3, 那么我们也就证明了偶数的哥德巴赫猜想。”, 直到2013年才有秘鲁数学家哈罗德贺欧夫格特彻底证明了三素数定理。
关键词:三素数定理,奇素数,加法交换律结合律
中图分类号:O156 文献标识码: A
证明:
根据2013年秘鲁数学家哈罗德·贺欧夫格特已经彻底地证明了的三素数定理:
每个大于等于9的奇数都是三个奇素数之和,每个奇素数都可以重复使用。
它用下列公式表示:Q是每个≥9的奇数,奇素数:q1≥3,q2≥3,q3≥3,
则Q=q1+q2+q3
根据加法交换律结合律,不妨设:q1≥q2≥q3≥3,
则Q-3=q1+q2+q3-3 显见:有且仅有q3=3时,Q-3=q1+q2,否则,奇数9,11,13都是三素数定理的反例。
即每个大于等于6的偶数都是两个奇素数之和
推论Q=3+q1+q2,即每个大于等于9的奇数都是3+两个奇素数之和。
我们运用数学归纳法做如下证明:
给出首项为9,公差为2的等差数列:Qn=7+2n:{9,11,13,15,17,.....}
Q1= 9
Q2= 11
Q3= 13
Q4= 15
.......
Qn=7+2n=3+q1+q2,(其中奇素数q1≥q2≥3,奇数Qn≥9,n为正整数)
数学归纳法:
第一步:当n=1时 ,Q1=9 时 ,Q1=9=3+q1+q2=3+3+3成立
第二步:假设 :n=k时,Qk=3+qk1+qk2成立,奇素数:qk1≥3,qk2≥3
当n=k+1时,Q(k+1)=Qk+2=3+qk1+qk2+2,
此时有且仅有2种情况:
A情况:qk1+2不为素数或者qk2+2不为素数时,Qk+2=Q(k+1)=5+qk1+qk2
即每个大于等于11的奇数都是5+两个奇素数之和,
而这个结论与“每个大于等于9的奇数都是3+两个奇素数之和”是等价的
即3+qk1+qk2+2=3+qk3+qk4,奇素数:qk3≥3,qk4≥3
B情况:
(1)若qk1+2为qk1的孪生素数P,
则:Qk+2=3+P+qk2,即每个大于等于11的奇数都是3+两个奇素数之和
(2) 若qk2+2为qk2的孪生素数P”,
则:Qk+2=3+P”+qk1,即每个大于等于11的奇数都是3+两个奇素数之和
综上所述,对于任意正整数n命题均成立,即:每个大于等于9的奇数都是3+两个奇素数之和
结论:每个大于等于9的奇数都是3+两个奇素数之和,Q=3+q1+q2,(奇素数q1≥q2≥3,奇数Q≥9)

参考文献:
[1] Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]
[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-5-8 07:23 | 显示全部楼层
鱼🐠不吃食,有鱼的道理!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-5-8 07:26 | 显示全部楼层
人们能够感知的三维空间,
如果能够理解三维空间能够与时间的转化,
那么人为仙就不是空谈了!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-5-8 09:29 | 显示全部楼层
术业有专攻,有时候99%的努力在1%的天赋面前,也显不出优势。韦神此举可谓是降维打击,毕竟“行走的爱因斯坦”不是人人都能达到的。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-5-8 09:33 | 显示全部楼层
本帖最后由 cuikun-186 于 2022-5-8 09:37 编辑

术业有专攻,有时候99%的努力在1%的天赋面前,也显不出优势。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-5-8 09:37 | 显示全部楼层
术业有专攻,有时候99%的努力在1%的天赋面前,也显不出优势。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-5-8 19:11 | 显示全部楼层

山不在高,有仙则名。水不在深,有龙则灵
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-6 02:22 , Processed in 0.110876 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表