|
本帖最后由 denglongshan 于 2022-7-12 22:24 编辑
- \!\(\*OverscriptBox["o", "_"]\) = o = 0;
- \!\(\*OverscriptBox["s", "_"]\) = 1/s;
- \!\(\*OverscriptBox["t", "_"]\) = 1/t;
- \!\(\*OverscriptBox["u", "_"]\) = 1/u;
- \!\(\*OverscriptBox["v", "_"]\) = 1/v;
- m[a_, b_] := (a + b)/2;
- \!\(\*OverscriptBox["m", "_"]\)[a_, b_] := (
- \!\(\*OverscriptBox["a", "_"]\) +
- \!\(\*OverscriptBox["b", "_"]\))/2;(*圆心在原点过单位圆上过两点的切线构成的切点 *)
- T[a_, b_] := (2 a b)/(a + b);
- \!\(\*OverscriptBox["T", "_"]\)[a_, b_] := 2/(
- a + b);(*圆心在原点过单位圆上过两点的切线构成的切点 *)
- kAB[a_, b_] := (a - b)/(
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\));
- \!\(\*OverscriptBox["kAB", "_"]\)[a_, b_] := 1/kAB[a, b];(*复斜率定义*)
- a = T[t, s];
- \!\(\*OverscriptBox["a", "_"]\) =
- \!\(\*OverscriptBox["T", "_"]\)[t, s]; b = T[t, u];
- \!\(\*OverscriptBox["b", "_"]\) =
- \!\(\*OverscriptBox["T", "_"]\)[t, u]; c = T[u, v];
- \!\(\*OverscriptBox["c", "_"]\) =
- \!\(\*OverscriptBox["T", "_"]\)[u, v]; d = T[s, v];
- \!\(\*OverscriptBox["d", "_"]\) =
- \!\(\*OverscriptBox["T", "_"]\)[s, v];
- e = m[b, d];
- \!\(\*OverscriptBox["e", "_"]\) =
- \!\(\*OverscriptBox["m", "_"]\)[b, d]; f = m[a, c];
- \!\(\*OverscriptBox["f", "_"]\) =
- \!\(\*OverscriptBox["m", "_"]\)[a, c];
- Simplify[{a,
- \!\(\*OverscriptBox["a", "_"]\), b,
- \!\(\*OverscriptBox["b", "_"]\), c,
- \!\(\*OverscriptBox["c", "_"]\), d,
- \!\(\*OverscriptBox["d", "_"]\)}]
- Simplify[{e/f,
- \!\(\*OverscriptBox["e", "_"]\)/
- \!\(\*OverscriptBox["f", "_"]\), kAB[o, e],
- kAB[o, f]}](*用取共轭和复斜率两种方法验证*)
复制代码
计算结果有深刻几何意义
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|