|
从简单算起。
\(\displaystyle\frac{1}{1^2}>\frac{\pi^2}{6}-\frac{1}{1}\)
\(\displaystyle\frac{1}{1^2}+\frac{1}{2^2}>\frac{\pi^2}{6}-\frac{1}{2}\)
\(\displaystyle\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}>\frac{\pi^2}{6}-\frac{1}{3}\)
\(\displaystyle\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}>\frac{\pi^2}{6}-\frac{1}{4}\)
\(\displaystyle\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}>\frac{\pi^2}{6}-\frac{1}{5}\)
\(\displaystyle\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}>\frac{\pi^2}{6}-\frac{1}{6}\)
\(也就是说:n=1, 2, 3, 4, 5, 6, 7, 8, 9, ......\)
\(\displaystyle\bigg(\frac{\pi^2}{6}-\sum_{k=1}^n\frac{1}{k^2}\bigg)^{-1}=1, 2, 3, 4, 5, 6, 7, 8, 9, ......\) |
|