|
真正的筛法得到的都是真值,简单说是数出来的。
因为所谓的筛法都是埃氏筛法,埃氏筛法得到的都是数出来的。
因此,只有得到了真值函数公式,然后对其下限值估计才能是完美的回答1+1问题。
r2(N)≥[N/(lnN)^2]的推导:
根据双筛法及素数定理可进一步推得:r2(N)=(N/2)∏mr≥[ N/(lnN)^2 ]≥1
证明:
对于共轭互逆数列A、B:
A:{1,3,5,7,9,……,(N-1)}
B:{(N-1),……,9,7,5,3,1}
显然N=A+B
根据埃氏筛法获得奇素数集合{Pr}:{1,3,5,…,Pr},Pr<√N,
为了获得偶数N的(1+1)表法数,按照双筛法进行分步操作:
第1步:将互逆数列用3双筛后得到真实剩余比m1
第2步:将余下的互逆数列再用5双筛后得到真实剩余比m2
第3步:将余下的互逆数列再用7双筛后得到真实剩余比m3
…
依次类推到:第r步:将余下的互逆数列再用Pr双筛后得到真实剩余比mr
这样就完成了对偶数N的求双筛法(1+1)表法数,
根据乘法原理有:r2(N)=(N/2)*m1*m2*m3*…*mr
即r2(N)=(N/2)∏mr
分析双筛法r2(N)的下限值:
第一步:先对A数列筛选,根据素数定理,
A中至少有[N/lnN ]≥1个奇素数,即此时的共轭互逆数列AB中至少有[ N/lnN ]个奇素数
第二步:再对B数列进行筛选,筛子是相同的 1/lnN ,
则根据乘法原理由此推得共轭数列AB中至少有:r2(N)≥[N/(lnN)^2]≥1个奇素数
这里是逻辑分析给出的:r2(N)≥[N/(lnN)^2]
【解析】
第一步:得出真值公式:r2(N)=(N/2)*m1*m2*m3*…*mr=(N/2)∏mr
第二步:对真值公式进行逻辑分析得到:r2(N)≥[N/(lnN)^2]
不难看出:r2(N)=(N/2)∏mr是真值公式,r2(N)≥[N/(lnN)^2]是下界值公式
r2(30)=8≥[30/(ln30)^2]=2,检验一下:8≥2正确;
r2(32)=6≥[32/(ln32)^2]=2,检验一下:6≥2正确;
|
|