|
本帖最后由 天山草 于 2022-10-5 08:42 编辑
m=2, n=1 时,a = 2 m n = 4; b = m^2 - n^2 = 3; c = m^2 + n^2 = 5;
若 x = 1, y = 33 ,则 (a^3 + x) + (b^3 + y) = 4^3 + 1 + 3^3 + 33 = 125 = 5^3 = c^3。
若 x = 2, y = 32 ,则 (a^3 + x) + (b^3 + y) = 4^3 + 2 + 3^3 + 32 = 125 = 5^3 = c^3。
.................................................
若 x = 16, y = 18 ,则 (a^3 + x) + (b^3 + y) = 4^3 + 16 + 3^3 + 18 = 125 = 5^3 = c^3。
.................................................
若 x = 33, y = 1 , 则 (a^3 + x) + (b^3 + y) = 4^3 + 33 + 3^3 + 1 = 125 = 5^3 = c^3。
因此当 m=2, n=1 时,原方程的解不止 x = 16, y = 18 这一组。 |
|