数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 8759|回复: 11

勾股数组研究

[复制链接]
发表于 2022-11-1 22:17 | 显示全部楼层 |阅读模式
本帖最后由 朱明君 于 2022-11-7 13:39 编辑
























本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2022-11-1 23:06 | 显示全部楼层
本帖最后由 elim 于 2022-11-1 12:19 编辑

勾股数组 \((a,b,c)=k(p,q,r)\) 全体可以表述如下(不难证明):
\(\small P=\{k(p,q,r)\mid \{p,q\}=\{n^2-m^2,2mn\}, r=(m^2+n^2),\binom{\gcd(m,n)=1}{k,m,n-m\in\mathbb{N}^+}\}\)

回复 支持 反对

使用道具 举报

发表于 2022-11-10 05:54 | 显示全部楼层
求A、B、C的正整数解?
(A^1013)^2+(B^1033)^2=(C^2023)^2
回复 支持 反对

使用道具 举报

发表于 2022-11-10 06:44 | 显示全部楼层
其实就是经典勾股数公式的变形:
a=2 m^(1/2) n^(1/2)
b=m-n
c=m+n
回复 支持 反对

使用道具 举报

发表于 2022-11-21 16:25 | 显示全部楼层
本帖最后由 cuikun-186 于 2022-11-21 16:27 编辑

朱老师您好,请问您对火花栏目现在的状态有什么看法?

自2018年10月16日发表我的《奇合数对个数密度定理》至今,我的文章排在第一位,您的排在第二位。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

发表于 2022-11-21 17:26 | 显示全部楼层
朱明君 发表于 2022-11-21 16:37
火花栏目的专家是砖家,审稿能力不如小学生

具体来说狗屁不是!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-12-9 21:03 | 显示全部楼层
本帖最后由 朱明君 于 2022-12-11 13:40 编辑

\(朱火华勾股数组通解公式\)
\(设\left( \frac{x}{2}\right)^2=mn{,}其中x为\ge4的偶数,且m>n{,}\ mn均为正整数,\)
\(x<\left( m-n\right){,}\ x为勾=a,m-n为股=b{,}\ \ m+n为弦=c{,}\)
\(x>\left( m-n\right){,}\ x为股=b{,}\ \ m-n为勾=a{,}\ \ m+n为弦=c{,}\)
\(则a^2+b^2=c^2\)
\(这个公式是我研究出来的,解决了古今中外数学家勾股不分,a b不分的问题,\)
\(勾股定理的定义是短边为勾,长边为股,斜边为弦,\)


\(设(x/2)^2=mn,其中x为大于等于4的偶数,且m﹥n,mn均为正整数,\)
\(则x^2+(m-n)^2=(m+n)^2\)

\(设x=mn,其中x为大于等于3的奇数,且m>n,mn均为正整数,\)
\(则x^2十[(m^2-n^2)/2]^2=[(m^2+n^2)/2]^2\)

\(设x=m+n,其中x为大于等于2的正整数,且mn均为正整数,\)
\(则[m(x+n)]^2+(2xn)^2=(x^2+n^2)^2\)

\(设x=m+n,其中x为大于等于3的正整数,且m>n,mn均为正整数,\)
\(  则[x(m-n)]^2+(2mn)^2=(m^2+n^2)^2\)      





\(巳知2的n次方的n为大于等于1的正整数,\)
\(求满足方程(3x+1)/2^n=Z的所有x和Z的奇数解。\)
\((1),当n是奇数时,\)
\(x(奇数)=2^{\left( n+1\right)}×N+2^n+\left\{ [2^{\left( n+1\right)}-1]/3\right\}\)
\(z(奇数)=6N+5,\)
\(其中N为≥0的整数。\)
\((2),当n是偶数时,\)
\(x(奇数)=2^{\left( n+1\right)}\times N+[(2^n-1)/3],\)
\(z(奇数)=6N+1,\)
\(其中n为正整数,N为≥0的整数。\)


\(求不定方程x^2+y^n=z^2的正整数解\)
\(设[y^{\left( n-1\right)}-y]/2=x,[y^{\left( n-1\right)}+y]/2=z,\)
\(   其中y为大于等于2的正整数,n为大于等于4的正整数,\)
\(则x^2+y^n=z^2,\)

回复 支持 反对

使用道具 举报

 楼主| 发表于 2022-12-10 22:03 | 显示全部楼层
本帖最后由 朱明君 于 2022-12-11 13:38 编辑

\(①{,}设(x/2)^2=mn{,}其中x为\ge4的偶数,\)
\(则x^2+(m-n)^2=(m+n)^2\)
\(若m n一奇一偶没有大于1的公倍数\),
\(则x^2+(m-n)^2=(m+n)^2为勾股数本原解数组。\)
\(计算n的方法,是由分解(x/2)^2得到,\)
\((x/2)^2=1\times F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn}{,}\ 其中F为质因数,\)
\(取这些因数重组小于(x/2)的数积为n。(x/2)^2/n=m。\)
\(详解:根据(x/2)^2=1\times F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn}{,}首先计算出1和全部质因数各自从\)
\(1到n次方的积数,去掉大于等于(x/2)的积数后重组,(同底数的数不能重组)\)
\(再去掉大于等于(x/2)的积数,余下的数为n。\)
\(实例:计算x=60的全部勾股数,\)
\((60/2)^2=900=1\times2^2\times3^2\times5^2{,}\)
\(1^1=1{,}\ \ 2^1=2{,}\ \ 3^1=3{,}\ \ 5^1=5{,}\)
\(2^2=4{,}\ \ 3^2=9{,}\ \ 5^2=25{,}\)
\(2\times3=6{,}\ 2\times5=10{,}\ \ 3\times4=12{,}\ \ 3\times5=15{,}\ \ 2\times9=18{,}\ \ 4\times5=20{,}\)
\(即n小于30的数有1,2,3,4,5,6,9,10,12,15,18,25。(13个)\)
\(根据公式(X/2)^2/n=m。\)
\(所以\)
\(n=1,     m=900。   n=2,m=450。   n=3,  m=300。   n=4, m=225。\)
\(n=5,  m=180。   n=6,m=150。   n=9,  m=100。   n=10,m=90。\)
\(n=12,m=75。     n=15, m=60。     n=18,m=50。     n=20,m=45。\)
\(n=25,m=36。\)
\(代入公式得:\)
\(60^2+(900-1)^2=(900+1)^2(本原解)\)
\(60^2+(450-2)^2=(450+2)^2\)
\(60^2+(300-3)^2=(300+3)^2\)
\(60^2+(225-4)^2=(225+4)^2(本原解)\)
\(60^2+(180-5)^2=(180+5)^2\)
\(60^2+(150-6)^2=(150+6)^2\)
\(60^2+(100-9)^2=(100+9)^2(本原解)\)
\(60^2+(90-10)^2=(90+10)^2\)
\(60^2+(75-12)^2=(75+12)^2\)
\(60^2+(60-15)^2=(60+15)^2\)
\(60^2+(50-18)^2=(50+18)^2\)
\(60^2+(45-20)^2=(45+20)^2\)
\(60^2+(36-25)^2=(36+25)^2(本原解)\)
\(详解\)
\((x/2)^2=mn,代入公式得(勾,股,弦)\)
\((4/2)^2=4\times1,(3,4,5)(本原解)\)
\((6/2)^2=9\times1,(8,6,10)(本原解)\)
\((8/2)^2=16\times1,(15,8,17)(本原解)\)
\((8/2)^2=8\times2,(6,8,10)\)                  
\((10/2)^2=25\times1,(24,10,26)(本原解)\)   
\((12/2)^2=36\times1,(35,12,37)(本原解)\)
\((12/2)^2=18\times2,(16,12,20)\)
\((12/2)^2=12\times3,(9,12,15)\)
\((12/2)^2=9\times4,(5,12,13)(本原解)\)
\((14/2)^2=49\times1,(48,14,50)\)
\(\cdots\cdots。\)

\(②{,}设x^2=mn,(其中X为\ge3的奇数){,}且m>n{,}\ m{,}n均为正整数,\)
\(则x^2+[(m-n)/2]^2=[(m+n)/2]^2。\)
\(若mn没有大于1的公约数,\)
\(则x^2+[(m-n)/2]^2=[(m+n)/2]^2为勾股数本愿解数组。\)
\(计算n的方法,是由分解X^2得到,\)
\(X^2=1\times F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn}{,}(其中F为质因数)\)
\(取这些因数重组小于X的数积为n{,}(X^2)/n=m。\)
\(详解:根据X^2=1\times F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn},首先计算出1和全部质因数各自从1到n次方的积数,\)
\(去掉大于等于X的积数后重组,(同底数的数不能重组)再去掉大于等于X的积数,余下的数为n。\)
\(实例:计算X=15时全部勾股数\)
\(X=15{,}\ \ 15^2=1\times3^2\times5^2{,}\)
\(1^1=1{,}\ \ 3^1=3{,}\ \ 5^1=5{,}\)
\(3^2=9{,}\ \ 5^2=25{,}\)
\(即n小于15的数有1,3,5,9。(4个)\)
\(根据公式X^2/n=m。\)
\(所以n=1{,}\ \ m=225。n=3,m=75。n=5,m=45。n=9,m=25。\)
\(代入公式得:\)
\(15^2+[(225-1)/2]^2=[(225+1)/2]^2(本原解)\)
\(15^2+[(75-3)/2]^2=(75+3)/2]^2\)
\(15^2+[(45-5)/2]^2=[(45+5)/2]^2\)
\(15^{ }+[(25-9)/2]^2=[(25+9)/2]^2(本原解)\)
\(详解\)
\(x^2=mn,代入公式得(勾,股,弦)\)
\(3^2=9\times1,(3,4,5)(本原解)\)
\(5^2=25\times1,(5,12,13)(本原解)\)
\(7^2=49\times1,(7,24,25)(本原解)\)              
\(9^2=81\times1,(9,40,42)(本原解)\)     
\(9^2=27\times3,\left( 9,12,15\right)\)  
\(11^2=121\times1,(11,60,61)(本原解)\)      
\(13^2=169\times1,(13,84,85)(本原解)\)         
\(15^2=225\times1,(15,112,113)(本原解)\)
\(15^2=75\times3,(15,36,39)\)
\(15^2=45\times5,(15,20,25)\)
\(15^2=25\times9,(15,8,17)(本原解)\)
\(\cdots\cdots。\)

\(X为勾全部解的解数公式\)
\(计算全部解的解数方法,是由分解X质因数中的指数得到,与底数无关。\)
\(X=F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn}{,}(其中X为\ge3的正整数,F为质因数,n为指数)\)
\(设X为勾全部解的解数为L,指数的对应数为2n+1。\)
\(则X(奇数),L=[(2n_1+1)(2n_2+1)\dots(2n_n+1)-1]/2\)
\(则X(偶数),L=[(2n_1+1-2)(2n_2+1)\dots(2n_n+1)-1]/2\)
\(实例X=15{,}  15=3^1\times5^1{,}\)
\(代入公式得[(2×1+1)×(2×1+1)-1]/2=4组。\)
\(实例:X=60{,}  60=2^2\times3^1\times5^1{,}\)
\(代入公式得  [(2×2+1-2)×(2×1+1)×(2×1+1)-1]/2=13组,\)
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-28 21:44 , Processed in 0.093651 second(s), 17 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表