谢谢 mathe! 谢谢 northwolves! 一并给出!
(2): a^2-b^2=n^2,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^2]/2], {n, 1,130}]
{0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 4, 3, 1, 2, 1, 4, 4, 1, 1, 7, 2, 1, 3, 4, 1, 4, 1, 4, 4, 1, 4, 7, 1, 1, 4,7, 1, 4, 1, 4,
(3): a^2-b^2=n^3,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^3]/2], {n, 1, 130}]
{0, 1, 2, 2, 2, 4, 2, 4, 3, 4, 2, 10, 2, 4, 8, 5, 2, 7, 2, 10, 8, 4, 2, 16, 3, 4, 5, 10, 2, 16, 2, 7, 8, 4, 8, 17, 2, 4, 8,16,
(4): a^2-b^2=n^4,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^4]/2], {n, 1, 130}]
{0, 1, 2, 3, 2, 7, 2, 5, 4, 7, 2, 17, 2, 7, 12, 7, 2, 13, 2, 17, 12, 7, 2, 27, 4, 7, 6, 17, 2, 37, 2, 9, 12, 7, 12, 31, 2, 7,
(5): a^2-b^2=n^5,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^5]/2], {n, 1, 130}]
{0, 2, 3, 4, 3, 12, 3, 7, 5, 12, 3, 27, 3, 12, 18, 9, 3, 22, 3, 27, 18, 12, 3, 42, 5, 12, 8, 27, 3, 72, 3, 12, 18, 12,
(6): a^2-b^2=n^6,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^6]/2], {n, 1, 130}]
{0, 2, 3, 5, 3, 17, 3, 8, 6, 17, 3, 38, 3, 17, 24, 11, 3, 32, 3, 38, 24, 17, 3, 59, 6, 17, 9, 38, 3, 122, 3, 14, 24, 17,
(7): a^2-b^2=n^7,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^7]/2], {n, 1, 130}]
{0, 3, 4, 6, 4, 24, 4, 10, 7, 24, 4, 52, 4, 24, 32, 13, 4, 45, 4, 52, 32, 24, 4, 80, 7, 24, 11, 52, 4, 192, 4, 17, 32,
(8): a^2-b^2=n^8,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^8]/2], {n, 1, 130}]
{0, 3, 4, 7, 4, 31, 4, 11, 8, 31, 4, 67, 4, 31, 40, 15, 4, 59, 4, 67, 40, 31, 4, 103, 8, 31, 12, 67, 4, 283, 4, 19, 40,
(9): a^2-b^2=n^9,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^9]/2], {n, 1, 130}]
{0, 4, 5, 8, 5, 40, 5, 13, 9, 40, 5, 85, 5, 40, 50, 17, 5, 76, 5, 85, 50, 40, 5, 130, 9, 40, 14, 85, 5, 400, 5, 22, 50, |