|
解函数丢番图方程aX^(2n+1)+bY^(2n+2)=cZ^(4n+3)
其中一组通解公式为:
X=2^(8n^2+6n-4)
*a^[(16n^2+28n+12)k+8n^2+18n+11]
*b^[(16n^2+28n+12)k+8n^2+18n+9]
*c^[(16n^2+28n+12)k+16n^2+20n+4]
*uv
*[u^(2n+1)-v^(2n+1)]^[ (8n^2+14n+6)k+8n^2+6n]
*[u^(2n+1)+v^(2n+1)]^[ (8n^2+14n+6)k+16n+16]
Y=2^(8n^2+2n-3)
*a^[(16n^2+20n+6)k+8n^2+14n+6]
*b^[(16n^2+20n+6)k+8n^2+14n+4]
*c^[(16n^2+20n+6)k+16n^2+12n+2]
*[u^(2n+1)-v^(2n+1)]^[ (8n^2+10n+3)k+8n^2+2n+1]
*[u^(2n+1)+v^(2n+1)]^[ (8n^2+10n+3)k+16n+8]
Z=2^(4n^2+2n-2)
*a^[(8n^2+12n+4)k+4n^2+8n+4]
*b^[(8n^2+12n+4)k+4n^2+8n+3]
*c^[(8n^2+12n+4)k+8n^2+8n+1]
*[u^(2n+1)-v^(2n+1)]^[ (4n^2+6n+2)k+4n^2+2n]
*[u^(2n+1)+v^(2n+1)]^[ (4n^2+6n+2)k+8n+6]
其中,n、u、v为正整数,k为0或正整数,u>v
仅对费尔马1的通解分了一下行,从分行后的表达式来看,X、Y、Z解表达式分别由8、6、6个因子组成,每个因子又都是复杂的指数式,各含有a,b,c,u,v,k六个不同的参变量,谁人也记不住,电脑恐怕也难以识别。
估计除了鲁先生给了个赞,杨给予分了一下行外,恐怕很少再有人阅读。
检验肯定异常繁杂,恕不复检!
|
|