|
设 \(f_x\left( x{,}y\right){,}f_y\left( x{,}y\right){,}f_{xy}\left( x{,}y\right)\) 在点 \(\left( x_0{,}y_0\right)\) 的领域内存在且 \(f_{xy}\left( x{,}y\right)\ \) 在点 \(\left( x_0{,}y_0\right)\) 连续,证明 \(f_{yx}\left( x_0{,}y_0\right)\) 存在且 \(f_{yx}\left( x_0{,}y_0\right)=f_{xy}\left( x_0{,}y_0\right)\) |
|