|
\(记AC=CE=1,AM=CN=r,AB=BC=\frac{\sqrt{3}}{3},∠CNB=\alpha,AC与BE的交点为G\)
\(△BCG,BM是角分线,\frac{\sin(\alpha-30)*(\sqrt{3}/6)*(1-r)}{\sin(90-\alpha)*(\sqrt{3}/3)*(r-1/2)}=1\)
\(△BCE,BN是角分线,\frac{\sin(\alpha-30)*(4\sqrt{3}/6)*(r)}{\sin(90-\alpha)*(\sqrt{3}/3)*(1-r)}=1\)
\(即:\frac{\sin(90-\alpha)}{\sin(\alpha-30)}=\frac{(\sqrt{3}/6)*(1-r)}{(\sqrt{3}/3)*(r-1/2)}=\frac{(4\sqrt{3}/6)*(r)}{(\sqrt{3}/3)*(1-r)},r=\frac{\sqrt{3}}{3}\) |
|