|
考虑单位圆的一个参数表示:\(Q = x\frac{{1 + iu}}{{1 - iu}}\), 当\(u=0\)时即为\(x\).
则\(x\)点处,它的切向量为
\[\pmb{v_x} = \mathop {\lim }\limits_{u \to 0} \frac{{dQ}}{{du}} = \mathop {\lim }\limits_{u \to 0} x\frac{{2i}}{{{{(1 - iu)}^2}}} = 2ix\]
于是切线上的点\(P\)可表示为
\[P = x + \lambda \pmb{v_x} = x + 2\lambda ix\]
若\(P\)点与\(y,z\)共线,则
\[{\mathop{\rm Im}\nolimits} \frac{{P - y}}{{y - z}} = \frac{{i{x^2} - ixy - ixz + iyz - 2{x^2}\lambda + 2yz\lambda }}{{2x(y - z)}} = 0\]
解出\(\lambda \), 即得\(P\)点的表示
\[P = \frac{{x(xy + xz - 2yz)}}{{{x^2} - yz}}\]
|
|