|
本帖最后由 愚工688 于 2023-2-1 07:11 编辑
而对于大偶数来说,比如说1000亿的大偶数,那么下界计算式inf(M)值的相对误差有多大呢?
以一些偶数的素对下界值 inf(M)的实例计算值来考察一下:
G(100000000000) = 149091160;
inf( 100000000000 )≈ 142957976.6 , Δ≈-0.041137 ,infS( 100000000000 )= 107218482.41 , k(m)= 1.33333
G(100000000002) = 268556111;
inf( 100000000002 )≈ 257491343.1 , Δ≈-0.041201,infS( 100000000002 )= 107218482.41 , k(m)= 2.40156
G(100000000004) = 111836359;
inf( 100000000004 )≈ 107224584.4 , Δ≈-0.041239,infS( 100000000004 )= 107218482.41 , k(m)= 1.00006
G(100000000006) = 111843604;
inf( 100000000006 )≈ 107245660.7 , Δ≈-0.041110,infS( 100000000006 )= 107218482.42 , k(m)= 1.00025
G(100000000008) = 223655943;
inf( 100000000008 )≈ 214436964.8 , Δ≈-0.041219,infS( 100000000008 )= 107218482.42 , k(m)= 2
G(100000000010) = 150645060;
inf( 100000000010 )≈ 144447965.8 , Δ≈-0.041137,infS( 100000000010 )= 107218482.42 , k(m)= 1.34723
G(100000000012) = 128533939;
inf( 100000000012 )≈ 123239635.0 , Δ≈-0.041190,infS( 100000000012 )= 107218482.42 , k(m)= 1.14943
G(100000000014) = 238586864;
inf( 100000000014 )≈ 228760131.1 , Δ≈-0.041187,infS( 100000000014 )= 107218482.42 , k(m)= 2.13359
G(100000000016) = 134188011;
inf( 100000000016 )≈ 128662178.9 , Δ≈-0.041180,infS( 100000000016 )= 107218482.43 , k(m)= 1.2
G(100000000018) = 111942653;
inf( 100000000018 )≈ 107340460.2 , Δ≈-0.041112,infS( 100000000018 )= 107218482.43 , k(m)= 1.00114
G(100000000020) = 298192310
inf( 100000000020 )≈ 285915953.2 , Δ≈-0.041169,infS( 100000000020 )= 107218482.43 , k(m)= 2.66667
G(100000000022) = 124402721;
inf( 100000000022 )≈ 119283555.6 , Δ≈-0.041150,infS( 100000000022 )= 107218482.43 , k(m)= 1.11253
具体的下界素对计算式:
inf( 100000000000 ) = 1/(1+ .21 )*( 100000000000 /2 -2)*p(m) ≈ 142957976.6 , k(m)= 1.33333
inf( 100000000002 ) = 1/(1+ .21 )*( 100000000002 /2 -2)*p(m) ≈ 257491343.1 , k(m)= 2.40156
inf( 100000000004 ) = 1/(1+ .21 )*( 100000000004 /2 -2)*p(m) ≈ 107224584.4 , k(m)= 1.00006
inf( 100000000006 ) = 1/(1+ .21 )*( 100000000006 /2 -2)*p(m) ≈ 107245660.7 , k(m)= 1.00025
inf( 100000000008 ) = 1/(1+ .21 )*( 100000000008 /2 -2)*p(m) ≈ 214436964.8 , k(m)= 2
inf( 100000000010 ) = 1/(1+ .21 )*( 100000000010 /2 -2)*p(m) ≈ 144447965.8 , k(m)= 1.34723
inf( 100000000012 ) = 1/(1+ .21 )*( 100000000012 /2 -2)*p(m) ≈ 123239635.0 , k(m)= 1.14943
inf( 100000000014 ) = 1/(1+ .21 )*( 100000000014 /2 -2)*p(m) ≈ 228760131.1 , k(m)= 2.13359
inf( 100000000016 ) = 1/(1+ .21 )*( 100000000016 /2 -2)*p(m) ≈ 128662178.9 , k(m)= 1.2
inf( 100000000018 ) = 1/(1+ .21 )*( 100000000018 /2 -2)*p(m) ≈ 107340460.2 , k(m)= 1.00114
inf( 100000000020 ) = 1/(1+ .21 )*( 100000000020 /2 -2)*p(m) ≈ 285915953.2 , k(m)= 2.66667
inf( 100000000022 ) = 1/(1+ .21 )*( 100000000022 /2 -2)*p(m) ≈ 119283555.6 , k(m)= 1.11253
显然,下界计算式inf(M)值略低于真值,相差实际上素对数量仅仅 4.2% 左右,可以说相当的接近。
因此区域下界计算值infS(m)也是相当接近连续偶数中的实际素对数值点的连接线的波动低点的,是名副其实的区域下界值。
若要得到精度比较高的下界计算值,那么仅仅需要把上面计算式中的修正系数的μ=0.21略缩小就可以了。μ=0.21是小偶数区域统计的大值,估计在大偶数趋于无限大时的连乘式误差极限在其附近。而在我有能力计算的大偶数(百万亿以下) 的修正系数μ<0.185。
同样对1000亿区域的偶数,取 μ=0.162 ,则下界计算值的精度将得到大幅度提高。并且还能够使用在一个比较大的区域。
实例:
G(100000000000) = 149091160;
inf( 100000000000 )≈ 148863296.6 , Δ≈-0.001528 ,infS( 100000000000 )= 111647472.43 , k(m)= 1.33333
G(100000000002) = 268556111;
inf( 100000000002 )≈ 268127817.0 , Δ≈-0.001595 ,infS( 100000000002 )= 111647472.43 , k(m)= 2.40156
G(100000000004) = 111836359;
inf( 100000000004 )≈ 111653826.5 , Δ≈-0.001632 ,infS( 100000000004 )= 111647472.43 , k(m)= 1.00006
G(100000000006) = 111843604;
inf( 100000000006 )≈ 111675773.4 , Δ≈-0.001501 ,infS( 100000000006 )= 111647472.43 , k(m)= 1.00025
G(100000000008) = 223655943;
inf( 100000000008 )≈ 223294944.9 , Δ≈-0.001614 ,infS( 100000000008 )= 111647472.43 , k(m)= 2
G(100000000010) = 150645060;
inf( 100000000010 )≈ 150414834.4 , Δ≈-0.001528,infS( 100000000010 )= 111647472.44 , k(m)= 1.34723
G(100000000012) = 128533939;
inf( 100000000012 )≈ 128330428.1 , Δ≈-0.001583,infS( 100000000012 )= 111647472.44 , k(m)= 1.14943
G(100000000014) = 238586864;
inf( 100000000014 )≈ 238209773.7 , Δ≈-0.001581,infS( 100000000014 )= 111647472.44 , k(m)= 2.13359
G(100000000016) = 134188011;
inf( 100000000016 )≈ 133976966.9 , Δ≈-0.001573,infS( 100000000016 )= 111647472.44 , k(m)= 1.2
G(100000000018) = 111942653;
inf( 100000000018 )≈ 111774488.9 , Δ≈-0.001502,infS( 100000000018 )= 111647472.45 , k(m)= 1.00114
G(100000000020) = 298192310;
inf( 100000000020 )≈ 297726593.2 , Δ≈-0.001562,infS( 100000000020 )= 111647472.45 , k(m)= 2.66667
G(100000000022) = 124402721;
inf( 100000000022 )≈ 124210930.6 , Δ≈-0.001542,infS( 100000000022 )= 111647472.45 , k(m)= 1.11253
Sp( 100000000000 ) = 1/(1+ .162 )*( 100000000000 /2 -2)*p(m) ≈ 148863296.6 , k(m)= 1.33333
Sp( 100000000002 ) = 1/(1+ .162 )*( 100000000002 /2 -2)*p(m) ≈ 268127817 , k(m)= 2.40156
Sp( 100000000004 ) = 1/(1+ .162 )*( 100000000004 /2 -2)*p(m) ≈ 111653826.5 , k(m)= 1.00006
Sp( 100000000006 ) = 1/(1+ .162 )*( 100000000006 /2 -2)*p(m) ≈ 111675773.4 , k(m)= 1.00025
Sp( 100000000008 ) = 1/(1+ .162 )*( 100000000008 /2 -2)*p(m) ≈ 223294944.9 , k(m)= 2
Sp( 100000000010 ) = 1/(1+ .162 )*( 100000000010 /2 -2)*p(m) ≈ 150414834.4 , k(m)= 1.34723
Sp( 100000000012 ) = 1/(1+ .162 )*( 100000000012 /2 -2)*p(m) ≈ 128330428.1 , k(m)= 1.14943
Sp( 100000000014 ) = 1/(1+ .162 )*( 100000000014 /2 -2)*p(m) ≈ 238209773.7 , k(m)= 2.13359
Sp( 100000000016 ) = 1/(1+ .162 )*( 100000000016 /2 -2)*p(m) ≈ 133976966.9 , k(m)= 1.2
Sp( 100000000018 ) = 1/(1+ .162 )*( 100000000018 /2 -2)*p(m) ≈ 111774488.9 , k(m)= 1.00114
Sp( 100000000020 ) = 1/(1+ .162 )*( 100000000020 /2 -2)*p(m) ≈ 297726593.2 , k(m)= 2.66667
Sp( 100000000022 ) = 1/(1+ .162 )*( 100000000022 /2 -2)*p(m) ≈ 124210930.6 , k(m)= 1.11253 |
|