|
\(\frac{\sin(x)\sin(x)\sin(x)}{\sin(A-x)\sin(B-x)\sin(A+B+x)}=1\)
\(\frac{\sin(A-x)\sin(A-x)\sin(A-x)}{\sin(x)\sin(B-A+x)\sin(2A+B-x)}=1\)
Table[Table[NSolve[{(Sin[(x) \[Pi]/180] Sin[(x) \[Pi]/180] Sin[(x) \[Pi]/180])/
(Sin[(5 A - x) \[Pi]/180] Sin[(5 B - x) \[Pi]/180] Sin[(5 A + 5 B + x) \[Pi]/180]) == 1,
5 A >= x >= 0}, {x}], {B, A, 18 - A/2}], {A, 1, 12}]
Table[Table[NSolve[{(Sin[(5A-x)\[Pi]/180]Sin[(5A-x)\[Pi]/180]Sin[(5A-x)\[Pi]/180])/
(Sin[(x) \[Pi]/180] Sin[(5 B - 5 A + x) \[Pi]/180] Sin[(10 A + 5 B - x) \[Pi]/180])== 1,
5 A >= x >= 0}, {x}], {B, A, 18 - A/2}], {A, 1, 12}] |
|