|
根据自然数的十进计数法可以提出如下的三个以有穷集合为项的无穷序列 :
{0,1},{0,1,2},……,{0,1,2,……,n},…… (1)
或{0,1,2,……,9},{0,1,2,……,19},……,{0,1,2,……,10n-1}, ……(2)
或{0,1},{0,1,2,3,4},……,{0,1,2,……, },……(3)
然后使用广义极限的方法,得到这三个无穷序列的趋向性极限都是想象性的元素个数为+∞的无穷集合。式中符号+∞是华东师大《数学分析》上册1980年版80 页中讲的“非正常(或称广义)极限[4] 性质的“非正常实数”。序列(1)中各个集合的元素个数为无穷数列{n+1},序列(2)中各个集合的元素个数为无穷数列{10n},序列(3)中各个集合的元素个数为无穷数列 ,虽然这三元素个数列的广义极限都是+∞,但根据菲赫金哥尔茨《微积分学教程》第一卷一分册整序变量的计算不定式, 与 的定值法则,都需要使用∞与0的取极限之前的变数计算其不定式的极限值,因此上述三个+∞ 表示的多少是不相同的:(2)式表示的比(1)式表示的元素个数多,(3)式表示的元素个数比(1)(2)式都多。康托尔把无穷集合元素看做定数,提出的无穷序数、无穷基数,自然数集合元素个数为 的做法违背事实。为此,需要提出如下的自然数集合的以实践事实为根据的定义。
定义2:元素个数为有限理想自然数的正常集合叫做有穷自然数集合;以元素个数无限增多的有穷自然数集合为项的无穷序列的元素个数序列的趋向于:包含所有自然数的元素个数为非正常实数+∞的自然数集合叫做:元素个数为非正常实数+∞的含有所有自然数的,不可构造完毕的想象性质的、无穷性质的、非正常自然数集合;记作N={0,1,2,3,……}。
|
|