|
本帖最后由 愚工688 于 2023-4-22 09:02 编辑
我使用连乘式计算的偶数素对下界值,计算式如下:
对于≥6的任意大的偶数M来说:
可以用一个下界计算函数 inf(M)来表示,而inf(M)小于偶数M的实际表为两个素数和的数量真值S(m),有
S(m)≥inf(M)= (A-2)*0.5π(1- 2/r )* π[(p1-1)/(p1- 2)] /(1+.21) .-------- { 式1}
式中:
p1系偶数含有的奇素数因子,p1≤ r ;
令 k(m)=π[(p1-1)/(p1- 2)];
则 k(m)可称为素因子系数;又k(m)值体现了素对数量的波动幅度,因此也可以称为波动系数。
显然不含有奇素数因子p1的偶数,其素因子系数 k(m)=1 。
从{ 式1}可以知道,偶数素对下界函数 inf(M)也是具有波动性的。它的下界,仅仅是相对该偶数本身的素对真值而言。
如果要对一个区域的偶数表为两个素数和的表法数S(m)的低位值进行考察,那么就需要排除掉波动系数的影响。把式1中的波动系数略去,合并两个系数,0.5/(1+.21)≈0.413 ,就可以得到偶数M表为两个素数和数量的区域下界计算值infS(m):
infS(m) ≈0.413(A-2)*π(1-2/p),----------- { 式2}
式中,p取√(M-2)以内的全部奇素数。
infS(m)计算值取值规律是向上取整值,而不是四舍五入。
根号内最大素数r对应区间首个偶数表为两个素数之和数量的下界计算值infS(m)的计算与实际区域最少素对的偶数的示例:
r=2 、r=3,r=5 的偶数区域:
M= 6 S(m)= 1 Sp(m)≈ .5 δ(m)≈-.5 K(m)= 1 infS(m)≈ .41
M= 12 S(m)= 1 Sp(m)≈ 1.333 δ(m)≈ .333 K(m)= 2 infS(m)≈ .55
M=28 S( 28 )= 2 Sp(m)≈ 1.2 δ(m)≈-.4 K(m)= 1 infS(m)≈ .99
因为 infS(6)≈ .41 ,向上取整 =1,
所以:任意≥6的偶数表为两个素数之和的表法数不少于1;
实际低位值偶数有 :S(6)= 1、S(8)= 1、S(12)= 1;
r=7的偶数区域(即7^2+3=52 起始的区域,下同):
S( 52 )= 3 Sp(m)≈ 1.714 δ(m)≈-.429 K(m)= 1 infS(m)≈ 1.41
因为 infS(52)≈ 1.41,向上取整= 2,
所以:任意≥52 的偶数表为两个素数之和的表法数不少于2;
实际低位值偶数有 :S(68)=2 ;
r=11的偶数区域(即11^2+3=124 起始的区域,下同):
M= 124 S(m)= 5 Sp(m)≈ 3.506 δ(m)≈-.299 K(m)= 1 infS(m)≈ 2.9
因为 infS(124)≈ 2.9,向上取整= 3,
所以:任意≥124 的偶数表为两个素数之和的表法数不少于3;
实际低位值偶数有 :S(128)= 3;
r=13的偶数区域:
M= 172 S(m)= 6 Sp(m)≈ 4.154 δ(m)≈-.308 K(m)= 1 infS(m)≈ 3.43
因为 infS(172)≈ 3.43,向上取整= 4,
所以:任意≥172 的偶数表为两个素数之和的表法数不少于4;
实际低位值偶数有 :S(188)= 5;
r=17的偶数区域与r=19的偶数区域:
M= 292 S(m)= 8 Sp(m)≈ 6.283 δ(m)≈-.215 K(m)= 1 infS(m)≈ 5.19
M= 364 S(m)= 14 Sp(m)≈ 9.199 δ(m)≈-.343 K(m)= 1.309 infS(m)≈ 5.81
因为 infS(292)≈ 5.19,向上取整= 6,
所以:任意≥292 的偶数表为两个素数之和的表法数不少于6 ;
实际低位值偶数有 :S( 332 )= 6 ;
r=23的偶数区域:
M= 532 S(m)= 17 Sp(m)≈ 11.957 δ(m)≈-.297 K(m)= 1.271 infS(m)≈ 7.78
因为 infS(532)≈ 7.78,向上取整= 8,
所以:任意≥532 的偶数表为两个素数之和的表法数不少于8;
实际低位值偶数有 :S( 542 )= 10 、S(632)= 10;
r=31的偶数区域:
M= 964 S(m)= 18 Sp(m)≈ 14.902 δ(m)≈-.172 K(m)= 1 infS(m)≈ 12.31
因为 infS(964)≈ 12.3,向上取整= 13,
所以:任意≥964 的偶数表为两个素数之和的表法数不少于13;
实际低位值偶数有:S( 992 )= 13 ;
r=37的偶数区域:
M= 1372 S(m)= 27 Sp(m)≈ 24.105 δ(m)≈-.107 K(m)= 1.2 infS(m)≈ 16.6
因为 infS(1372)≈ 16.6,向上取整= 17,
所以:任意≥1372 的偶数表为两个素数之和的表法数不少于17;
实际低位值偶数有:S( 1412 )= 18 ;
r=41的偶数区域:
M= 1684 S(m)= 31 Sp(m)≈ 23.465 δ(m)≈-.243 K(m)= 1 infS(m)≈ 19.4
因为 infS(1682)≈ 19.4,向上取整= 20,
所以:任意≥1682 的偶数表为两个素数之和的表法数不少于20;
实际低位值偶数有:S( 1718 )= 21 ;
……
可以看到,各个不同素数对应的区域下界素对数量计算值infS(m)与不小于该偶数的限定区域偶数的素对最小值是比较接近的。
在1000亿区域偶数的素数对下界计算值inf(M)的相对误差大约在4.1%左右,附近偶数的相对误差的变化波动很小:
G(100000000000) = 149091160;
inf( 100000000000 )≈ 142957976.6 , Δ≈-0.041137 ,infS( 100000000000 )= 107218482.41 ,
G(100000000002) = 268556111;
inf( 100000000002 )≈ 257491343.1 , Δ≈-0.041201,infS( 100000000002 )= 107218482.41 ,
G(100000000004) = 111836359;
inf( 100000000004 )≈ 107224584.4 , Δ≈-0.041239,infS( 100000000004 )= 107218482.41 ,
G(100000000006) = 111843604;
inf( 100000000006 )≈ 107245660.7 , Δ≈-0.041110,infS( 100000000006 )= 107218482.42 ,
G(100000000008) = 223655943;
inf( 100000000008 )≈ 214436964.8 , Δ≈-0.041219,infS( 100000000008 )= 107218482.42 ,
G(100000000010) = 150645060;
inf( 100000000010 )≈ 144447965.8 , Δ≈-0.041137,infS( 100000000010 )= 107218482.42 ,
G(100000000012) = 128533939;
inf( 100000000012 )≈ 123239635.0 , Δ≈-0.041190,infS( 100000000012 )= 107218482.42 ,
G(100000000014) = 238586864;
inf( 100000000014 )≈ 228760131.1 , Δ≈-0.041187,infS( 100000000014 )= 107218482.42 ,
G(100000000016) = 134188011;
inf( 100000000016 )≈ 128662178.9 , Δ≈-0.041180,infS( 100000000016 )= 107218482.43 ,
G(100000000018) = 111942653;
inf( 100000000018 )≈ 107340460.2 , Δ≈-0.041112,infS( 100000000018 )= 107218482.43 ,
G(100000000020) = 298192310
inf( 100000000020 )≈ 285915953.2 , Δ≈-0.041169,infS( 100000000020 )= 107218482.43 ,
G(100000000022) = 124402721;
inf( 100000000022 )≈ 119283555.6 , Δ≈-0.041150,infS( 100000000022 )= 107218482.43 ,
具体的下界素对计算式:
inf( 100000000000 ) = 1/(1+ .21 )*( 100000000000 /2 -2)*p(m) ≈ 142957976.6 , k(m)= 1.33333
inf( 100000000002 ) = 1/(1+ .21 )*( 100000000002 /2 -2)*p(m) ≈ 257491343.1 , k(m)= 2.40156
inf( 100000000004 ) = 1/(1+ .21 )*( 100000000004 /2 -2)*p(m) ≈ 107224584.4 , k(m)= 1.00006
inf( 100000000006 ) = 1/(1+ .21 )*( 100000000006 /2 -2)*p(m) ≈ 107245660.7 , k(m)= 1.00025
inf( 100000000008 ) = 1/(1+ .21 )*( 100000000008 /2 -2)*p(m) ≈ 214436964.8 , k(m)= 2
inf( 100000000010 ) = 1/(1+ .21 )*( 100000000010 /2 -2)*p(m) ≈ 144447965.8 , k(m)= 1.34723
inf( 100000000012 ) = 1/(1+ .21 )*( 100000000012 /2 -2)*p(m) ≈ 123239635.0 , k(m)= 1.14943
inf( 100000000014 ) = 1/(1+ .21 )*( 100000000014 /2 -2)*p(m) ≈ 228760131.1 , k(m)= 2.13359
inf( 100000000016 ) = 1/(1+ .21 )*( 100000000016 /2 -2)*p(m) ≈ 128662178.9 , k(m)= 1.2
inf( 100000000018 ) = 1/(1+ .21 )*( 100000000018 /2 -2)*p(m) ≈ 107340460.2 , k(m)= 1.00114
inf( 100000000020 ) = 1/(1+ .21 )*( 100000000020 /2 -2)*p(m) ≈ 285915953.2 , k(m)= 2.66667
inf( 100000000022 ) = 1/(1+ .21 )*( 100000000022 /2 -2)*p(m) ≈ 119283555.6 , k(m)= 1.11253
当然在比较大一些的偶数区域,如果我们希望计算得到的偶数M的下界素对数量计算值inf(M)具有比较高一些的计算精度,那么就不能使用同一的修正系数μ=0.21,而要采用比样本统计区域的μ值略微小一点的μ值做修正系数,才能得到比较高精度的下界计算值inf(M)。
例:在1100亿——1500亿区域采用μ=0.162即可得到比较高精度的下界计算值inf(M)。
G(110000000000) = 180801081;
inf( 110000000000 )≈ 180550355.5 , Δ≈-0.001387 ,infS( 110000000000 )= 121871489.95 ,
G(110000000002) = 122052830;
inf( 110000000002 )≈ 121871490 , Δ≈-0.001486 ,infS( 110000000002 )= 121871489.95 ,
G(110000000004) = 250274235;
inf( 110000000004 )≈ 249916814.3 , Δ≈-0.001428 ,infS( 110000000004 )= 121871489.95 ,
G(110000000006) = 133138114;
inf( 110000000006 )≈ 132950716.3 , Δ≈-0.001408 ,infS( 110000000006 )= 121871489.95 ,
G(110000000008) = 129058444;
inf( 110000000008 )≈ 128868117.6 , Δ≈-0.001475 ,infS( 110000000008 )= 121871489.96 ,
G(110000000010) = 325654239;
inf( 110000000010 )≈ 325204309 , Δ≈-0.001382 ,infS( 110000000010 )= 121871489.96 ,
G(110000000012) = 156839107;
inf( 110000000012 )≈ 156621995.1 , Δ≈-0.001384 ,infS( 110000000012 )= 121871489.96 ,
G(110000000014) = 122060507;
inf( 110000000014 )≈ 121884990.7 , Δ≈-0.001438 ,infS( 110000000014 )= 121871489.96 ,
G(110000000016) = 244091411;
inf( 110000000016 )≈ 243742979.9 , Δ≈-0.001427 ,infS( 110000000016 )= 121871489.97 ,
G(110000000018) = 122058317;
inf( 110000000018 )≈ 121890323.5 , Δ≈-0.001376 ,infS( 110000000018 )= 121871489.97 ,
G(110000000020) = 165628934;
inf( 110000000020 )≈ 165382515.2 , Δ≈-0.001488 ,infS( 110000000020 )= 121871489.97 ,
G(110000000022) = 271221025;
inf( 110000000022 )≈ 270825533.3 , Δ≈-0.001458 ,infS( 110000000022 )= 121871489.97 ,
计算式:
inf( 110000000000 ) = 1/(1+ .162 )*( 110000000000 /2 -2)*p(m) ≈ 180550355.5 ,
inf( 110000000002 ) = 1/(1+ .162 )*( 110000000002 /2 -2)*p(m) ≈ 121871490 ,
inf( 110000000004 ) = 1/(1+ .162 )*( 110000000004 /2 -2)*p(m) ≈ 249916814.3 ,
inf( 110000000006 ) = 1/(1+ .162 )*( 110000000006 /2 -2)*p(m) ≈ 132950716.3 ,
inf( 110000000008 ) = 1/(1+ .162 )*( 110000000008 /2 -2)*p(m) ≈ 128868117.6 ,
inf( 110000000010 ) = 1/(1+ .162 )*( 110000000010 /2 -2)*p(m) ≈ 325204309 ,
inf( 110000000012 ) = 1/(1+ .162 )*( 110000000012 /2 -2)*p(m) ≈ 156621995.1 ,
inf( 110000000014 ) = 1/(1+ .162 )*( 110000000014 /2 -2)*p(m) ≈ 121884990.7 ,
inf( 110000000016 ) = 1/(1+ .162 )*( 110000000016 /2 -2)*p(m) ≈ 243742979.9 ,
inf( 110000000018 ) = 1/(1+ .162 )*( 110000000018 /2 -2)*p(m) ≈ 121890323.5 ,
inf( 110000000020 ) = 1/(1+ .162 )*( 110000000020 /2 -2)*p(m) ≈ 165382515.2 ,
inf( 110000000022 ) = 1/(1+ .162 )*( 110000000022 /2 -2)*p(m) ≈ 270825533.3 ,
G(120000000000) = 352503092;
inf( 120000000000 )≈ 352131790.3 , Δ≈-0.001053 ,infS( 120000000000 )= 132049421.35 ,
G(120000000002) = 137230841;
inf( 120000000002 )≈ 137072275.3 , Δ≈-0.001155 ,infS( 120000000002 )= 132049421.35 ,
G(120000000004) = 132188594;
inf( 120000000004 )≈ 132049421.4 , Δ≈-0.001053 ,infS( 120000000004 )= 132049421.35 ,
G(120000000006) = 280130367;
inf( 120000000006 )≈ 279807448.7 , Δ≈-0.001153 ,infS( 120000000006 )= 132049421.35 ,
G(120000000008) = 158634730;
inf( 120000000008 )≈ 158459305.6 , Δ≈-0.001106 ,infS( 120000000008 )= 132049421.35 ,
G(120000000010) = 209105088;
inf( 120000000010 )≈ 208865513.7 , Δ≈-0.001146 ,infS( 120000000010 )= 132049421.36 ,
G(120000000012) = 267143187;
inf( 120000000012 )≈ 266851430.9 , Δ≈-0.001092 ,infS( 120000000012 )= 132049421.36 ,
G(120000000014) = 132197362;
inf( 120000000014 )≈ 132051403.6 , Δ≈-0.001104 ,infS( 120000000014 )= 132049421.36 ,
G(120000000016) = 144860746;
inf( 120000000016 )≈ 144705741.9 , Δ≈-0.001070 ,infS( 120000000016 )= 132049421.36 ,
G(120000000018) = 267816270;
inf( 120000000018 )≈ 267528697.8 , Δ≈-0.001074 ,infS( 120000000018 )= 132049421.37 ,
G(120000000020) = 176255697;
inf( 120000000020 )≈ 176065895.2 , Δ≈-0.001077 ,infS( 120000000020 )= 132049421.37 ,
G(120000000022) = 158634821;
inf( 120000000022 )≈ 158459305.6 , Δ≈-0.001106 ,infS( 120000000022 )= 132049421.37 ,
计算式:
inf( 120000000000 ) = 1/(1+ .162 )*( 120000000000 /2 -2)*p(m) ≈ 352131790.3 ,
inf( 120000000002 ) = 1/(1+ .162 )*( 120000000002 /2 -2)*p(m) ≈ 137072275.3 ,
inf( 120000000004 ) = 1/(1+ .162 )*( 120000000004 /2 -2)*p(m) ≈ 132049421.4 ,
inf( 120000000006 ) = 1/(1+ .162 )*( 120000000006 /2 -2)*p(m) ≈ 279807448.7 ,
inf( 120000000008 ) = 1/(1+ .162 )*( 120000000008 /2 -2)*p(m) ≈ 158459305.6 ,
inf( 120000000010 ) = 1/(1+ .162 )*( 120000000010 /2 -2)*p(m) ≈ 208865513.7 ,
inf( 120000000012 ) = 1/(1+ .162 )*( 120000000012 /2 -2)*p(m) ≈ 266851430.9 ,
inf( 120000000014 ) = 1/(1+ .162 )*( 120000000014 /2 -2)*p(m) ≈ 132051403.6 ,
inf( 120000000016 ) = 1/(1+ .162 )*( 120000000016 /2 -2)*p(m) ≈ 144705741.9 ,
inf( 120000000018 ) = 1/(1+ .162 )*( 120000000018 /2 -2)*p(m) ≈ 267528697.8 ,
inf( 120000000020 ) = 1/(1+ .162 )*( 120000000020 /2 -2)*p(m) ≈ 176065895.2 ,
inf( 120000000022 ) = 1/(1+ .162 )*( 120000000022 /2 -2)*p(m) ≈ 158459305.6 ,
G(150000000000) = 432693233;
inf( 150000000000 )≈ 432611673 , Δ≈-0.0001885,infS( m )= 162229377.38 , k(m)= 2.66667
G(150000000002) = 162281514;
inf( 150000000002 )≈ 162229377.4 , Δ≈-0.000321,infS( m )= 162229377.38 , k(m)= 1
G(150000000004) = 173090450;
inf( 150000000004 )≈ 173052270.7 , Δ≈-0.0002206,infS( m )= 162229377.38 , k(m)= 1.06671
G(150000000006) = 324533701;
inf( 150000000006 )≈ 324477220.4 , Δ≈-0.0001740,infS( m )= 162229377.39 , k(m)= 2.00011
G(150000000008) = 163640122;
inf( 150000000008 )≈ 163599942.2 , Δ≈-0.0002455,infS( m )= 162229377.39 , k(m)= 1.00845
G(150000000010) = 259646691;
inf( 150000000010 )≈ 259567003.8 , Δ≈-0.0003069,infS( m )= 162229377.39 , k(m)= 1.6
G(150000000012) = 324534559;
inf( 150000000012 )≈ 324458754.8 , Δ≈-0.0002336,infS( m )= 162229377.39 , k(m)= 2
G(150000000014) = 166666276;
inf( 150000000014 )≈ 166627941.1 , Δ≈-0.0002300,infS( m )= 162229377.4 , k(m)= 1.02711
G(150000000016) = 162262009;
inf( 150000000016 )≈ 162229377.4 , Δ≈-0.0002011,infS( m )= 162229377.4 , k(m)= 1
G(150000000018) = 373009121;
inf( 150000000018 )≈ 372941097.5 , Δ≈-0.0001824,infS( m )= 162229377.4 , k(m)= 2.29885
G(150000000020) = 237083721;
inf( 150000000020 )≈ 237037741.1 , Δ≈-0.0001939,infS( m )= 162229377.4 , k(m)= 1.46113
G(150000000022) = 162255812;
inf( 150000000022 )≈ 162229377.4 , Δ≈-0.0001629,infS( 150000000022 )= 162229377.4 , k(m)= 1
计算式:
inf( 150000000000 ) = 1/(1+ .162 )*( 150000000000 /2 -2)*p(m) ≈ 432611673 ,
inf( 150000000002 ) = 1/(1+ .162 )*( 150000000002 /2 -2)*p(m) ≈ 162229377.4 ,
inf( 150000000004 ) = 1/(1+ .162 )*( 150000000004 /2 -2)*p(m) ≈ 173052270.7 ,
inf( 150000000006 ) = 1/(1+ .162 )*( 150000000006 /2 -2)*p(m) ≈ 324477220.4 ,
inf( 150000000008 ) = 1/(1+ .162 )*( 150000000008 /2 -2)*p(m) ≈ 163599942.2 ,
inf( 150000000010 ) = 1/(1+ .162 )*( 150000000010 /2 -2)*p(m) ≈ 259567003.8 ,
inf( 150000000012 ) = 1/(1+ .162 )*( 150000000012 /2 -2)*p(m) ≈ 324458754.8 ,
inf( 150000000014 ) = 1/(1+ .162 )*( 150000000014 /2 -2)*p(m) ≈ 166627941.1 ,
inf( 150000000016 ) = 1/(1+ .162 )*( 150000000016 /2 -2)*p(m) ≈ 162229377.4 ,
inf( 150000000018 ) = 1/(1+ .162 )*( 150000000018 /2 -2)*p(m) ≈ 372941097.5 ,
inf( 150000000020 ) = 1/(1+ .162 )*( 150000000020 /2 -2)*p(m) ≈ 237037741.1 ,
inf( 150000000022 ) = 1/(1+ .162 )*( 150000000022 /2 -2)*p(m) ≈ 162229377.4 ,
可以看到相对误差值已经很小了,虽然样本的相对误差都是负的,但是这个修正系数μ值的使用于下界计算值已经临近极限,偶数再大,就会出现相对误差正值,也就不是下界计算值了。
G(170000000000) = 258900543;
inf( 170000000000 )≈ 258966062.1 , Δ≈0.00025307 ,infS( m )= 182085512.38 , k(m)= 1.42222
G(170000000002) = 218461602;
inf( 170000000002 )≈ 218502614.9 , Δ≈0.00018774 ,infS( m )= 182085512.39 , k(m)= 1.2
G(170000000004) = 381425390;
inf( 170000000004 )≈ 381512502.2 , Δ≈0.00022839 ,infS( m )= 182085512.39 , k(m)= 2.09524
G(170000000006) = 185153680;
inf( 170000000006 )≈ 185181747.1 , Δ≈0.00015159 ,infS( m )= 182085512.39 , k(m)= 1.017
G(170000000008) = 188343060;
inf( 170000000008 )≈ 188364323.2 , Δ≈0.00011290 ,infS( m )= 182085512.39 , k(m)= 1.03448
G(170000000010) = 494981724;
inf( 170000000010 )≈ 495082177.5 , Δ≈0.00020249 ,infS( m )= 182085512.39 , k(m)= 2.71895
计算式:
inf( 170000000000 ) = 1/(1+ .162 )*( 170000000000 /2 -2)*p(m) ≈ 258966062.1
inf( 170000000002 ) = 1/(1+ .162 )*( 170000000002 /2 -2)*p(m) ≈ 218502614.9
inf( 170000000004 ) = 1/(1+ .162 )*( 170000000004 /2 -2)*p(m) ≈ 381512502.2
inf( 170000000006 ) = 1/(1+ .162 )*( 170000000006 /2 -2)*p(m) ≈ 185181747.1
inf( 170000000008 ) = 1/(1+ .162 )*( 170000000008 /2 -2)*p(m) ≈ 188364323.2
inf( 170000000010 ) = 1/(1+ .162 )*( 170000000010 /2 -2)*p(m) ≈ 495082177.5
|
|