|

楼主 |
发表于 2023-5-11 01:13
|
显示全部楼层
05 展望
从运动规律的发展历程中我们看到时间维度是如何与其他维度不一样的。目前我们所知的 3 种普适力学各有一个普适常数:c ,h 和 k ,分别揭示了物理世界的一个认识界限:光速不变性、不确定性和不可逆性(图 1)。其中,两个界限与时间相关,在一定程度上物理学已回答了时间为何不同于其他维度。更完整的回答可能涉及对一个客观世界的根本规则——因果关系的更深刻理解,也许要等到对 3 种普适力学有更进一步理解之后。
此外还有一系列的与时间相关的问题需要回答,难度也许要小一点:我们注意到相对论量子场论是相对论力学与量子力学的优美结合,但它连接到演化力学或统计力学就显得特设性很强,目前好的做法之一是久保-马丁-施温格(Kubo-Martin-Schwinger)条件,在理论上还可以比这个条件做得更好吗?超弦理论中的多宇宙理论已经在应用演化理论,后者的角色可以更大吗?我们能把 3 种普适力学都统一在一个理论构架中吗?这个统一是会在统一四种相互作用之前还是之后?我们的宇宙到底是孤立的还是开放的?等等。对有志探索的人们,也许第一步是了解物理学已经取得的、比较确定的成就[21]。然后,体验、享受你的探索历程。或者,纯粹来欣赏人类理解时间这一艰苦卓绝的奋斗。
参考文献
[1] Aristotle. Complete Works of Aristotle (v1). New York: Princeton University Press, 1984
[2] Newton I. The Principia: Mathematical Principles of Natural Philosophy. New York: University of California Press, 1999 [Newton I. 赵振江, 译. 自然哲学的数学原理. 北京: 商务印书馆, 2006]
[3] Peng H W, Xu X S. Introduction to Theoretical Physics (in Chinese). Beijing: Peking University Press, 1998 [彭桓武, 徐锡申. 理论物理基础. 北京: 北京大学出版社, 1998]
[4] Zhang Y Z. Experimental Foundation of Special Relativity (in Chinese). Beijing: Science Press, 1979 [张元仲. 狭义相对论实验基础. 北京: 科学出版社, 1979]
[5] Wang Z X. Principle of Quantum Mechanics (in Chinese). 2nd ed.. Beijing: Peking University Press, 2008 [王正行. 量子力学原理. 第 2 版. 北京: 北京大学出版社, 2008]
[6] Hawking J W, Perry M J, Strominger A. Black holes have soft quantum hair. Phys Rev Lett, 2016, 116: 231301
[7] Barbour J. The End of Time. New York: Oxford University Press, 2000
[8] Wang Z X. Thermodynamics (in Chinese). 2nd ed. Beijing: Peking University Press, 2014 [王竹溪. 热力学. 第 2 版. 北京: 北京大学出版社, 2014]
[9] Gibbs J W. Elementary Principles in Statistical Mechanics. New York: Charles Scribner’s Sons, 1902 [Gibbs J W. 毛俊雯, 译. 统计力学的基本原理. 合肥: 中国科学技术大学出版社, 2016]
[10] Hao B L. Directions in Chaos (1&2). Singapore: World Scientific, 1987, 1988
[11] Lu X Y, Lin J Z. Can we develop a general theory of the dynamics of turbulent flows and the motion of granular materials (in Chinese)? Chin Sci Bull, 2017, 62: 1115–1118 [陆夕云, 林建忠. 能否发展关于湍流动力学和颗粒材料运动学的综合理论?科学通报, 2017, 62: 1115–1118]
[12] Ao P. Emerging of stochastic dynamical equalities and steady state thermodynamics from Darwinian dynamics. Commun Theor Phys, 2008, 49: 1073–1090
[13] Ao P. From N=∞ to N=1: Arrival of dynamical foundation for statistical mechanics (in Chinese). In: TD Lee Library, ed. Essays in Honor of the 90th Birthday of TD Lee. Shanghai: Shanghai Jiao Tong University Press, 2016. 281–287 [敖平. 从 N=∞ 到 N=1 :期望已久的统计力学普适动力学基础已到来. 李政道图书馆, 编. 心通天宇——李政道教授九十华诞文集. 上海: 上海交通大学出版社, 2016. 281–287]
[14] Ao P, Kwon C, Qian H. On the existence of potential landscape in the evolution of complex systems. Complexity, 2007, 12: 19–27
[15] Qian H, Ao P, Tu Y, et al. A framework towards understanding mesoscopic phenomena: Emergent unpredictability, symmetry breaking and dynamics across scales. Chem Phys Lett, 2016, 665: 153–161
[16] Ao P. Potential in stochastic differential equations: Novel construction. J Phys A, 2004, 37: L25–L30
[17] Kwon C, Ao P, Thouless D J. Structure of stochastic dynamics near fixed points. Proc Natl Acad Sci USA, 2005, 102: 13029–13033
[18] Ma Y A, Tan Q J, Yuan R S, et al. Potential function in a continuous dissipative chaotic system: Decomposition scheme and role of strange attractor. Int J Bifurc Chaos, 2014, 24: 1450015
[19] Yuan R, Tang Y, Ao P. SDE decomposition and A-type stochastic interpretation in nonequilibrium processes. Front Phys, 2017, 12: 120201
[20] Ao P. The work of David J Thouless: The discovery of topological phase transition led by curiosity (in Chinese). Chin Sci Bull, 2017, 62: 1199–1203 [敖平. 大卫 邵勒斯的治学和建树: 纯粹探索凌绝顶. 科学通报, 2017, 62: 1199–1203]
[21] Brown L M, Pais A, Pippard B. Twentieth Century Physics (I-III). New York: CRC Press, 1995 [Brown L M, Pais A, Pippard B. 刘寄星, 译. 二十世纪物理学(1–3). 北京: 科学出版社, 2014]
本文原文发表于《科学通报》2018 年第 2 期。
熬平 返朴 2023-05-10 08:10 发表于上海 |
|