|

楼主 |
发表于 2023-6-7 16:26
|
显示全部楼层
本帖最后由 dodonaomikiki 于 2023-6-7 16:29 编辑
\begin{align*}
Set:\\
\ell: y&=k(x-1) ( k \prec 0)\\
A(x1,y1), B (x2,y2)\\
\Longrightarrow x1 \prec x2\\
\begin{cases} y= k(x-1) \\ \frac{x^2}{4}+y^2=1 \end{cases}\\
\Longrightarrow (1+4k^2)x^2-8k^2x+4(k^2 -1)&=0\\
\begin{cases} x1+x2= \frac{8k^2 }{ 1+4k^2 } \\ x1 \bullet x2= \frac{ 4( k^2-2 ) }{ 1+4k^2 } \end{cases}\\
\Longrightarrow \ell_{AP}: y&=\frac{ y1(x-2) }{ x1-2 } \\
Order \qquad that:\\
x=1 \Longrightarrow y_M&=\frac{ -y1 }{ x1-2 } \\
Likewise\\
y_N&=\frac{ -y2 }{ x2-2 } \\
\end{align*}
|
|