数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 3057|回复: 4

素数分布和一般性哥德巴赫猜想证明

[复制链接]
发表于 2023-7-16 19:40 | 显示全部楼层 |阅读模式
质数分布和一般性哥德巴赫猜想的证明
其实,得到这个问题的第一时间我就想到了完全平方区间(即用完全平方数划分区间)经过划分我们可以得到一个结论,即在两个完全平方数之间质数个数是在上升的。
经过简单的计算,我们可以得到质数分布的大致规律。
即在大约每5个完全平方区间内,质数的个数就加一。
实验数据:(公开)
1,Interval(4,9): 4 Distribution Frequency: 1 不存在
2,Interval(9,16): 2 Distribution Frequency: 3 -2
3,Interval(16,25): 3 Distribution Frequency: 3 1
4,Interval(25,36): 2 Distribution Frequency: 5 -1
5,Interval(36,49): 4 Distribution Frequency: 3 2
6,Interval(49,64): 3 Distribution Frequency: 5 -1
7,Interval(64,81): 4 Distribution Frequency: 4 1
8,Interval(81,100): 3 Distribution Frequency: 6 -1
9,Interval(100,121): 5 Distribution Frequency: 4 2
10,Interval(121,144): 4 Distribution Frequency: 5 -1
11,Interval(144,169): 5 Distribution Frequency: 5 1
12,Interval(169,196): 5 Distribution Frequency: 5 0
13,Interval(196,225): 4 Distribution Frequency: 7 -1
14,Interval(225,256): 6 Distribution Frequency: 5 2
15,Interval(256,289): 7 Distribution Frequency: 4 1
16,Interval(289,324): 5 Distribution Frequency: 7 -2
17,Interval(324,361): 6 Distribution Frequency: 6 1
18,Interval(361,400): 6 Distribution Frequency: 6 0
19,Interval(400,441): 7 Distribution Frequency: 5 1
20,Interval(441,484): 7 Distribution Frequency: 6 0
21,Interval(484,529): 7 Distribution Frequency: 6 0
22,Interval(529,576): 6 Distribution Frequency: 7 -1
23,Interval(576,625): 9 Distribution Frequency: 5 3
24,Interval(625,676): 8 Distribution Frequency: 6 -1
25,Interval(676,729): 7 Distribution Frequency: 7 -1
26,Interval(729,784): 8 Distribution Frequency: 6 1
27,Interval(784,841): 9 Distribution Frequency: 6 1
28,Interval(841,900): 8 Distribution Frequency: 7 -1
29,Interval(900,961): 8 Distribution Frequency: 7 0
30,Interval(961,1024): 10 Distribution Frequency: 6 2
31,Interval(1024,1089): 9 Distribution Frequency: 7 -1
32,Interval(1089,1156): 10 Distribution Frequency: 6 1
33,Interval(1156,1225): 9 Distribution Frequency: 7 -1
34,Interval(1225,1296): 10 Distribution Frequency: 7 1
35,Interval(1296,1369): 9 Distribution Frequency: 8 -1
36,Interval(1369,1444): 9 Distribution Frequency: 8 0
37,Interval(1444,1521): 12 Distribution Frequency: 6 3
38,Interval(1521,1600): 11 Distribution Frequency: 7 -1
39,Interval(1600,1681): 12 Distribution Frequency: 6 1
40,Interval(1681,1764): 10 Distribution Frequency: 8 -2
41,Interval(1764,1849): 10 Distribution Frequency: 8 0
42,Interval(1849,1936): 12 Distribution Frequency: 7 2
43,Interval(1936,2025): 11 Distribution Frequency: 8 -1
44,Interval(2025,2116): 13 Distribution Frequency: 7 2
45,Interval(2116,2209): 10 Distribution Frequency: 9 -3
46,Interval(2209,2304): 13 Distribution Frequency: 7 3
47,Interval(2304,2401): 15 Distribution Frequency: 6 2
48,Interval(2401,2500): 14 Distribution Frequency: 7 -1
49,Interval(2500,2601): 7 Distribution Frequency: 14 -7
50,Interval(2601,2704): 15 Distribution Frequency: 6 8
51,Interval(2704,2809): 16 Distribution Frequency: 6 1
52,Interval(2809,2916): 12 Distribution Frequency: 8 -4
53,Interval(2916,3025): 13 Distribution Frequency: 8 1
54,Interval(3025,3136): 11 Distribution Frequency: 10 -2
55,Interval(3136,3249): 12 Distribution Frequency: 9 1
56,Interval(3249,3364): 16 Distribution Frequency: 7 4
57,Interval(3364,3481): 14 Distribution Frequency: 8 -2
58,Interval(3481,3600): 16 Distribution Frequency: 7 2
59,Interval(3600,3721): 16 Distribution Frequency: 7 0
60,Interval(3721,3844): 13 Distribution Frequency: 9 -3
61,Interval(3844,3969): 17 Distribution Frequency: 7 4
62,Interval(3969,4096): 15 Distribution Frequency: 8 -2
63,Interval(4096,4225): 14 Distribution Frequency: 9 -1
64,Interval(4225,4356): 15 Distribution Frequency: 8 1
65,Interval(4356,4489): 15 Distribution Frequency: 8 0
66,Interval(4489,4624): 15 Distribution Frequency: 9 0
67,Interval(4624,4761): 17 Distribution Frequency: 8 2
68,Interval(4761,4900): 13 Distribution Frequency: 10 -4
69,Interval(4900,5041): 21 Distribution Frequency: 6 8
70,Interval(5041,5184): 15 Distribution Frequency: 9 -6
71,Interval(5184,5329): 15 Distribution Frequency: 9 0
72,Interval(5329,5476): 17 Distribution Frequency: 8 2
73,Interval(5476,5625): 17 Distribution Frequency: 8 0
74,Interval(5625,5776): 18 Distribution Frequency: 8 1
75,Interval(5776,5929): 22 Distribution Frequency: 6 4
76,Interval(5929,6084): 14 Distribution Frequency: 11 -8
77,Interval(6084,6241): 18 Distribution Frequency: 8 4
78,Interval(6241,6400): 23 Distribution Frequency: 6 5
79,Interval(6400,6561): 13 Distribution Frequency: 12 -10
80,Interval(6561,6724): 20 Distribution Frequency: 8 7
81,Interval(6724,6889): 19 Distribution Frequency: 8 -1
82,Interval(6889,7056): 20 Distribution Frequency: 8 1
83,Interval(7056,7225): 17 Distribution Frequency: 9 -3
84,Interval(7225,7396): 16 Distribution Frequency: 10 -1
85,Interval(7396,7569): 21 Distribution Frequency: 8 5
86,Interval(7569,7744): 22 Distribution Frequency: 7 1
87,Interval(7744,7921): 18 Distribution Frequency: 9 -4
88,Interval(7921,8100): 18 Distribution Frequency: 9 0
89,Interval(8100,8281): 20 Distribution Frequency: 9 2
90,Interval(8281,8464): 20 Distribution Frequency: 9 0
91,Interval(8464,8649): 19 Distribution Frequency: 9 -1
92,Interval(8649,8836): 23 Distribution Frequency: 8 4
93,Interval(8836,9025): 21 Distribution Frequency: 9 -2
94,Interval(9025,9216): 21 Distribution Frequency: 9 0
95,Interval(9216,9409): 21 Distribution Frequency: 9 0
96,Interval(9409,9604): 22 Distribution Frequency: 8 1
97,Interval(9604,9801): 23 Distribution Frequency: 8 1
98,Interval(9801,10000): 21 Distribution Frequency: 9 -2
99,Interval(10000,10201): 23 Distribution Frequency: 8 2
100,Interval(10201,10404): 22 Distribution Frequency: 9 -1
101,Interval(10404,10609): 20 Distribution Frequency: 10 -2
102,Interval(10609,10816): 21 Distribution Frequency: 9 1
103,Interval(10816,11025): 21 Distribution Frequency: 9 0
104,Interval(11025,11236): 21 Distribution Frequency: 10 0
105,Interval(11236,11449): 24 Distribution Frequency: 8 3
106,Interval(11449,11664): 17 Distribution Frequency: 12 -7
107,Interval(11664,11881): 23 Distribution Frequency: 9 6
108,Interval(11881,12100): 24 Distribution Frequency: 9 1
109,Interval(12100,12321): 24 Distribution Frequency: 9 0
110,Interval(12321,12544): 27 Distribution Frequency: 8 3
111,Interval(12544,12769): 25 Distribution Frequency: 9 -2
112,Interval(12769,12996): 24 Distribution Frequency: 9 -1
113,Interval(12996,13225): 25 Distribution Frequency: 9 1
114,Interval(13225,13456): 22 Distribution Frequency: 10 -3
115,Interval(13456,13689): 23 Distribution Frequency: 10 1
116,Interval(13689,13924): 29 Distribution Frequency: 8 6
117,Interval(13924,14161): 21 Distribution Frequency: 11 -8
118,Interval(14161,14400): 19 Distribution Frequency: 12 -2
119,Interval(14400,14641): 29 Distribution Frequency: 8 10
120,Interval(14641,14884): 28 Distribution Frequency: 8 -1
121,Interval(14884,15129): 23 Distribution Frequency: 10 -5
122,Interval(15129,15376): 30 Distribution Frequency: 8 7
123,Interval(15376,15625): 25 Distribution Frequency: 9 -5
124,Interval(15625,15876): 27 Distribution Frequency: 9 2
125,Interval(15876,16129): 29 Distribution Frequency: 8 2
126,Interval(16129,16384): 23 Distribution Frequency: 11 -6
127,Interval(16384,16641): 24 Distribution Frequency: 10 1
128,Interval(16641,16900): 23 Distribution Frequency: 11 -1
129,Interval(16900,17161): 28 Distribution Frequency: 9 5
130,Interval(17161,17424): 28 Distribution Frequency: 9 0
131,Interval(17424,17689): 28 Distribution Frequency: 9 0
132,Interval(17689,17956): 25 Distribution Frequency: 10 -3
133,Interval(17956,18225): 31 Distribution Frequency: 8 6
134,Interval(18225,18496): 30 Distribution Frequency: 9 -1
135,Interval(18496,18769): 23 Distribution Frequency: 11 -7
136,Interval(18769,19044): 21 Distribution Frequency: 13 -2
137,Interval(19044,19321): 27 Distribution Frequency: 10 6
138,Interval(19321,19600): 33 Distribution Frequency: 8 6
139,Interval(19600,19881): 25 Distribution Frequency: 11 -8
140,Interval(19881,20164): 33 Distribution Frequency: 8 8
141,Interval(20164,20449): 29 Distribution Frequency: 9 -4
142,Interval(20449,20736): 25 Distribution Frequency: 11 -4
143,Interval(20736,21025): 30 Distribution Frequency: 9 5
注: 最后一列是 质数个数和上一个质数个数的差 或 差的相反数。
根据 实验数据 我们可以看出质数分布频率在稳步上升。
经过计算 得到 质数个数和上一个质数个数的差 和 相邻两个区间数字个数的差 的比值 是 一定的。
所以 P(存在可能加起来等于偶数的质数的个数) 是 一定的。
所以 P(哥猜成立) 约等于 1。
现在 我们只需要确认这些 质数 可能存在的位置。
根据 经验 一般质数末位 为1,3,7,9。
因为 末位为4,8,0都可以通过 1,3,7,9的加法得到。
只需要 证明 2,6 为末位的数 可以通过加法得到。
末位为2 一般由 以 1,11为末位的数相加得到, 根据 实验数据 得知 成立。
末位为6 一般由 以 13为末位的数相加得到, 根据 实验数据 得知 成立。
求大佬指点。谢谢!!!!!!!!!
 楼主| 发表于 2023-7-16 20:44 | 显示全部楼层
求指导谢谢
回复 支持 反对

使用道具 举报

发表于 2023-7-17 17:26 | 显示全部楼层
计算机实验只能算验证,而非证明
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-9-8 21:19 | 显示全部楼层
好的,明白了
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-24 01:13 , Processed in 0.094665 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表