|

楼主 |
发表于 2023-7-26 02:21
|
显示全部楼层
本帖最后由 dodonaomikiki 于 2023-7-25 18:30 编辑
\begin{align*}
\Longrightarrow M(\frac{ -4}{ 3k^2+4 } , \frac{ 3k}{ 3k^2+4 } ) \\
Cauz \qquad \overrightarrow {ON}&=\lambda \bullet \overrightarrow { OM}\\
\Longrightarrow N(\frac{ -4\lambda }{ 3k^2+4 } , \frac{ 3k \lambda }{ 3k^2+4 } )\\
\Longrightarrow\\
\frac{ 16\lambda ^2 }{ (3k^2+4 )^2 \bullet 4 } + \frac{ 9k^2 \lambda ^2 }{ (3k^2+4)^2 \bullet 3 } &=1\\
4 \lambda ^2 +3k^2\lambda ^2 &= (3k^2+4 )^2 \\
\lambda ^2& =3k^2+4 \\
And, Area(AOB)&=\frac{OF}{2} \bullet \Bigg| y1-y2 \Bigg| \\
&=\frac{OF}{2} \bullet \sqrt{ ( y1+y2)^2 -4y1y2}\\
&=\frac{ \sqrt{ (6k)^2+4 \bullet 9 } }{2 (3k^2+4 )}\\
&=\frac{ 6 \sqrt{ k^2+1 } }{2 (3k^2+4 )}\\
&=\frac{ 3 \sqrt{ k^2+1 } }{3k^2+4 }\\
\end{align*} |
|