本论文是作者继《关于强哥德巴赫猜想的完全证明》、《关于孪生素数猜想的完全证明》之后的又一全新数论成果。
(论文详情请看附件)
摘 要 本文探究的是波利尼亚克猜想的完全证明,源自于中国古代印刷术的现代化升级和偶数双极数阵的灵感,采用全新的“素数印刷术”并将作者《关于孪生素数猜想的完全证明》中的Y函数全线升级。简明扼要且完全正确地证明了波利尼亚克猜想并正式升级为孙氏等距定理(固偶间距定理):全体非零自然数中固定间距为偶数2u(u为任意全体非零自然数)的素数对有无穷多对。
Abstract This paper explores the complete proof of the Polyniac conjecture, derived
from the modernization of ancient Chinese printing and the inspiration of even bipolar arrays, using a new "prime number printing" and upgrading the Y function in the author's "Complete Proof of the Twin Prime Number Conjecture". The Polyniac
concise and completely correct proof of the Polyniac conjecture was officially upgraded to Sun's equidistance theorem ( the equal even spacing theorem ) : there areinfinite pairs of prime numbers with a fixed spacing of 2u ( u being any integral nonzero natural number ) in all nonzero natural numbers