|
本帖最后由 天山草 于 2023-11-11 19:47 编辑
用复平面解析几何法证明坎迪定理:
程序图片:
运行结果:
程序代码:
- Clear["Global`*"];(*令 ABCDEF 都在单位圆上且 AB 平行于实轴,用 \[Lambda] = AM/MB 和 \
- A、B、D、F 点的坐标为变量 *)
- \!\(\*OverscriptBox[\(o\), \(_\)]\) = o = 0; \!\(\*OverscriptBox[\(a\), \(_\)]\) = 1/a; \!\(\*OverscriptBox[\(b\), \(_\)]\) = 1/b;
- \!\(\*OverscriptBox[\(d\), \(_\)]\) = 1/d; \!\(\*OverscriptBox[\(f\), \(_\)]\) = 1/f;
- m = \[Lambda] b + (1 - \[Lambda]) a; \!\(\*OverscriptBox[\(m\), \(_\)]\) = \[Lambda] \!\(\*OverscriptBox[\(b\), \(_\)]\) + (1 - \[Lambda]) \!\(\*OverscriptBox[\(a\), \(_\)]\); (*\[Lambda]=AM/MB*)Print["M = ", m];
- k[a_, b_] := (a - b)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\)); (*复斜率定义*)
- (*FC是圆O上一条弦,M是弦上一点,则:*)
- c = o + (\!\(\*OverscriptBox[\(o\), \(_\)]\) - \!\(\*OverscriptBox[\(f\), \(_\)]\)) k[f, m];
- \!\(\*OverscriptBox[\(c\), \(_\)]\) = \!\(\*OverscriptBox[\(o\), \(_\)]\) + (o - f)/k[f, m]; Print["C = ", Simplify[c]];
- (*DE是圆O上一条弦,M是弦上一点,则:*)
- e = o + (\!\(\*OverscriptBox[\(o\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\)) k[d, m]; \!\(\*OverscriptBox[\(e\), \(_\)]\) =
- \!\(\*OverscriptBox[\(o\), \(_\)]\) + (o - d)/k[d, m]; Print["E = ", Simplify[e]];
- Jd[a_, b_, c_, d_] := (a b (c + d) - c d (a + b))/(a b - c d);
- \!\(\*OverscriptBox[\(Jd\), \(_\)]\)[a_, b_, c_, d_] := ( a + b - c - d)/(a b - c d); (*单位圆上AB弦与CD弦的交点*)
- p = Simplify@Jd[a, b, c, d]; \!\(\*OverscriptBox[\(p\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[a, b, c, d];
- q = Simplify@Jd[a, b, e, f]; \!\(\*OverscriptBox[\(q\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[a, b, e, f];
- Print["P = ", p]; Print["Q = ", q];
- (* 设AB与实轴平行,则AM的长度等于M的实部减去A的实部,BM、PM、QM的长度表达式类似 *)
- AM = Simplify[(m + \!\(\*OverscriptBox[\(m\), \(_\)]\))/2 - (a + \!\(\*OverscriptBox[\(a\), \(_\)]\))/2]; BM = Simplify[(b + \!\(\*OverscriptBox[\(b\), \(_\)]\))/2 - (m + \!\(\*OverscriptBox[\(m\), \(_\)]\))/2];
- PM = Simplify[(m + \!\(\*OverscriptBox[\(m\), \(_\)]\))/2 - (p + \!\(\*OverscriptBox[\(p\), \(_\)]\))/2]; QM = Simplify[(q + \!\(\*OverscriptBox[\(q\), \(_\)]\))/2 - (m + \!\(\*OverscriptBox[\(m\), \(_\)]\))/2];
- Print["AM = ", AM]; Print["BM = ", BM];
- Print["PM = ", PM]; Print["QM = ", QM];
- Print["\!\(\*FractionBox[\(1\), \(AM\)]\)-\!\(\*FractionBox[\(1\), \(BM\)]\) = \!\(\*FractionBox[\(1\), \
- \(PM\)]\)-\!\(\*FractionBox[\(1\), \(QM\)]\) 成立否?",
- Simplify[1/AM - 1/BM == 1/PM - 1/QM]];
复制代码
当 λ=1/2 时:
PM = QM, 就转化为蝴蝶定理。 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|