|
本帖最后由 天山草 于 2023-11-16 11:09 编辑
- Clear["Global`*"];(*令△ABC的内切圆心 I 为单位圆,且BC边与实轴平行*)
- \[Lambda] = 2 Sqrt[3]; K = E^(2 I \[Pi]/3); K = (-1/2 + I Sqrt[3]/2);
- \!\(\*OverscriptBox[\(i\), \(_\)]\) = i = 0; o3 = \[Lambda] ((u + v) + I (v u - 1))/(u v + 1);
- \!\(\*OverscriptBox[\(o3\), \(_\)]\) = \[Lambda] ((u + v) - I (v u - 1))/(u v + 1);
- o2 = \[Lambda] (u - I); \!\(\*OverscriptBox[\(o2\), \(_\)]\) = \[Lambda] (u + I); o1 = \[Lambda] (v - I);
- \!\(\*OverscriptBox[\(o1\), \(_\)]\) = \[Lambda] (v + I);
- (*三个切点:*) d = -\[Lambda] I; \!\(\*OverscriptBox[\(d\), \(_\)]\) = \[Lambda] I; e = \[Lambda] ( I (v - I))/(v + I);
- \!\(\*OverscriptBox[\(e\), \(_\)]\) = \[Lambda] (-I (v + I))/(v - I); f = \[Lambda] (I (u - I))/(u + I);
- \!\(\*OverscriptBox[\(f\), \(_\)]\) = \[Lambda] (-I (u + I))/(u - I); (*外接圆半径:*) R = -\[Lambda] ((1 + u^2) (1 + v^2))/(
- 4 (1 + u v));
- k[a_, b_] := (a - b)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\)); (*复斜率定义*)
- W1 = {u, v} /. Simplify@Solve[{R == 6 + 2 Sqrt[3], k[f, e] K == k[d, e]}, {u, v}] //Flatten; u = Part[W1, 3]; v = Part[W1, 4];
- o3 = Simplify[\[Lambda] ((u + v) + I (v u - 1))/(u v + 1)];
- \!\(\*OverscriptBox[\(o3\), \(_\)]\) = Simplify[\[Lambda] ((u + v) - I (v u - 1))/(u v + 1)];
- o2 = Simplify[\[Lambda] (u - I)]; \!\(\*OverscriptBox[\(o2\), \(_\)]\) = Simplify[\[Lambda] (u + I)]; o1 = Simplify[\[Lambda] (v - I)]; \!\(\*OverscriptBox[\(o1\), \(_\)]\) = Simplify[\[Lambda] (v + I)];
- d = -\[Lambda] I; \!\(\*OverscriptBox[\(d\), \(_\)]\) = \[Lambda] I; e = Simplify[\[Lambda] (I (v - I))/(v + I)];
- \!\(\*OverscriptBox[\(e\), \(_\)]\) = Simplify[\[Lambda] (-I (v + I))/(v - I)];
- f = Simplify[\[Lambda] (I (u - I))/(u + I)]; \!\(\*OverscriptBox[\(f\), \(_\)]\) = Simplify[\[Lambda] (-I (u + I))/(u - I)];
- Print["O1 = ", o1]; Print["O2 = ", o2]; Print["O3 = ", o3];
- Print["D = ", d]; Print["E = ", e]; Print["F = ", f];
- Print["r1 = ", FullSimplify[Sqrt[(o1 - d) (\!\(\*OverscriptBox[\(o1\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\))]], " \[TildeTilde] ",
- N[Re@Sqrt[(o1 - d) (\!\(\*OverscriptBox[\(o1\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\))]]];
- Print["r2 = ", FullSimplify[Sqrt[(o2 - d) (\!\(\*OverscriptBox[\(o2\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\))]]];
- Print["r3 = ", FullSimplify[Sqrt[(o3 - e) (\!\(\*OverscriptBox[\(o3\), \(_\)]\) - \!\(\*OverscriptBox[\(e\), \(_\)]\))]], " \[TildeTilde] ",
- N[Re@Sqrt[(o3 - e) (\!\(\*OverscriptBox[\(o3\), \(_\)]\) - \!\(\*OverscriptBox[\(e\), \(_\)]\))]]];
复制代码
运行结果:
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|