|
\(题目:已知S_{3}=5,S_{5}=3,求:S_{8}=?\)
\(S_{3}=a_{1}+(a_{1}+d)+(a_{1}+2d)=3a_{1}+3d=5,=>a_{1}+d=\frac{5}{3},5a_{1}+5d=\frac{25}{3},8a_{1}+8d=\frac{40}{3}\)
\(S_{5}=a_{1}+(a_{1}+d)+(a_{1}+2d)+(a_{1}+3d)+(a_{1}+4d)=5a_{1}+10d=(5a_{1}+5d)+5d=\frac{25}{3}+5d=3,=>5d=\frac{16}{-3}\)
\(S_{8}=a_{1}+(a_{1}+d)+(a_{1}+2d)+(a_{1}+3d)+(a_{1}+4d)+(a_{1}+5d)+(a_{1}+6d)+(a_{1}+7d)=8a_{1}+28d=(8a_{1}+8d)+4*5d=\frac{40}{3}+4*\frac{16}{-3}=-8\)
|
|