数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 836|回复: 6

求证:m=p

[复制链接]
发表于 2024-10-8 20:31 | 显示全部楼层 |阅读模式
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=my\),\(m>t\)
整数\(a>0\),\(c>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=my\),\(m>t\)
整数\(a>0\),\(c>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
123123
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=my\),\(m>t\)
整数\(a>0\),\(c>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=my\),\(m>t\)
整数\(a>0\),\(c>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
 楼主| 发表于 2024-10-8 20:34 | 显示全部楼层
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=my\)
整数\(a>0\),\(c>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=my\)
整数\(a>0\),\(c>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=my\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=my\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=my\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=my\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=my\)
整数\(a>0\),\(c>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=my\)
整数\(a>0\),\(c>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=my\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=my\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=my\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=my\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-10-8 20:41 | 显示全部楼层
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=my\),\(m>t\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=my\),\(m>t\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
123123
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=my\),\(m>t\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=my\),\(m>t\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=my\),\(m>t\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-10-8 20:43 | 显示全部楼层
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=my\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=my\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=my\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=my\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=my\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=my\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
123123
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=my\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=my\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=my\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=my\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=my\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=my\),\(u=4k+1\),\(m\ne5v\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),\(v>0\),\(y>1\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-10-8 20:54 | 显示全部楼层
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=2m\)
整数\(a>0\),\(c>0\),\(t>0\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=2m\)
整数\(a>0\),\(c>0\),\(t>0\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=2m\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=2m\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2-3u+2=m\),\(c=2m\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(a^2+c^2t^2=c^2m\),\(2u^2+3u+2=m\),\(c=2m\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=2m\)
整数\(a>0\),\(c>0\),\(t>0\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=2m\)
整数\(a>0\),\(c>0\),\(t>0\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=2m\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=2m\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(m>1\),素数\(p>0\),\(u>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2-3u+2=m\),\(c=2m\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(a^2+c^2m^2t^2=c^4m\),\(2u^2+3u+2=m\),\(c=2m\),\(u=4k+1\)
整数\(a>0\),\(c>0\),\(k>0\),\(t>0\),奇数\(m>1\),\(u>1\),素数\(p>0\)
求证:\(m=p\)

回复 支持 反对

使用道具 举报

发表于 2024-10-16 05:39 | 显示全部楼层
本帖最后由 yangchuanju 于 2024-10-16 11:28 编辑

8天啦,太阳先生天天睡大觉吗!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-10-16 08:25 | 显示全部楼层
命题是错误的,有反例存在
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-20 23:33 , Processed in 0.080950 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表