数学中国

用户名  找回密码
 注册
帖子
热搜: 活动 交友 discuz
查看: 737|回复: 0

中心极限定理:从 1733 到 1937 ,一场跨越两百年的传奇

[复制链接]
发表于 2025-1-10 00:30 | 显示全部楼层 |阅读模式
中心极限定理:从 1733 到 1937 ,一场跨越两百年的传奇

中心极限定理是概率论和统计学中的核心定理之一,其发展历程贯穿了数学史的几个重要阶段。无数伟大的数学家和统计学家做出了巨大的贡献,共同谱写了一场跨越两百年的传奇。

撰文 | 郭旭

中心极限定理(Central limit theorems, CLT)是概率论和统计学中的一个核心定理。在统计学的实践中,中心极限定理无处不在。中心极限定理表明,在一定条件下,若干随机变量的算术平均值的分布可以用正态分布近似。中心极限定理简洁优美且有普遍适用性。它并不需要明确知道参与求和的随机变量的精确分布,而只要满足一些较弱的条件即可。然而和大数定律(Law of large numbers)不同,中心极限定理并不是那么自然。我们很容易理解硬币正面朝上的频率应该逐渐接近于朝上的概率,而不太容易理解为什么即使每个变量是从偏态分布比如指数分布、卡方分布中抽取的,它们的样本均值都会近似服从正态分布。从 1733 年棣莫弗首次得出了一个特殊版本的中心极限定理到 1935 年费勒和莱维给出中心极限定理的充要条件,无数伟大的数学家和统计学家做出了巨大的贡献,共同谱写了一场跨越两百年的传奇。

1. 法国数学家的贡献



亚伯拉罕·棣莫弗(Abraham De Moivre,1667-1754)在 1733 年给出了中心极限定理的雏形。这也是正态分布的第一次出现。他利用由他和詹姆斯·斯特林(James Stirling, 1692-1770)共同发展的现今被称为斯特林公式给出了二项分布的正态近似。他的工作是雅各布·伯努利 (Jacob Bernoulli, 1655-1705)大数定律的进一步发展。尽管大数定律表明频率和概率很接近,但却无法给出均匀硬币在 n 次抛掷中 n/2+i 次正面朝上的概率的更加精细的刻画。然而棣莫弗仅仅将这一超越时代的成果看作是二项分布的近似,而并没有意识到中心极限定理的普遍存在。



下一个重大的突破是由皮埃尔-西蒙·拉普拉斯(Pierre-Simon Laplace, 1749-1827)给出的。1812 年他发表了重要的《概率分析论》(Théorie Analytique des Probabilités, TAP)一书。他使用由他在 1785 年引入的特征函数进行了论证。这一证明思路甚至影响到了 100 年之后的亚历山大·李亚普诺夫(Aleksandr Mikhailovich Lyapunov, 1857-1918)。尽管在 1785 年拉普拉斯已得出了一些初步的结果,但非常奇怪的是直到近 40 年后他才得到一个较一般化的中心极限定理。拉普拉斯所得出的中心极限定理是第一个一般化的结果。他的结果可应用于有界的随机变量。



西莫恩·德尼·泊松(Simeon-Denis Poisson, 1781-1840)在 1824 年和 1829 年发表了两篇文章来讨论中心极限定理。他希望能够对拉普拉斯的结果给出更加严格的论证。他的贡献主要是两个方面:1. 他创造了“choses”这一概念,可以看作是现代观点下的“随机变量”的开端;2. 他给出了一些反例比如柯西分布来说明中心极限定理有时并不总是成立。

这一时期的研究主要将中心极限定理看作是个工具而不是数学对象本身。在早期,概率论并不被看作是严格的数学理论而更多的是一种常识。到了 19 世纪后期,很多数学家希望给出中心极限定理更加严格的证明。这其中包括德国数学家约翰·彼得·古斯塔夫·勒热纳·狄利克雷(Johann Peter Gustav Lejeune Dirichlet, 1805-1859), 弗里德里希·威廉·贝塞尔(Friedrich Wilhelm Bessel, 1784-1846)和法国数学家奥古斯丁·路易斯·柯西(Augustin Louis Cauchy, 1789-1857)等。

狄利克雷和贝塞尔在他们的证明中引入了“不连续因子”,进一步发展和完善了泊松的证明。狄利克雷还尝试给出正态近似的误差。尽管这一尝试并不是很成功,但这是第一次对近似误差的较深入的研究。柯西是第一批认真地将概率论看作是纯粹数学的大数学家之一。在与伊雷内-朱尔·比内梅 (Irénée-Jules Bienaymé, 1796-1878)关于最小二乘的讨论中,柯西建立了正态近似误差的一个上界。

关于中心极限定理的早期证明往往不够严谨,定理所需的条件并没有清晰地给出,同时一般限定所讨论的变量有界。从 1870 年到 1910 年,俄国数学家开始在历史舞台上展露他们的才华。以帕夫努蒂·切比雪夫(Pafnuty Lvovich Chebyshev, 1821-1894), 安德雷·安德耶维齐·马尔可夫(Andrey Andreyevich Markov, 1856-1922)和亚历山大·李亚普诺夫(Aleksandr Mikhailovich Lyapunov, 1857-1918)为代表的“圣彼得学派”在中心极限定理的发展史上写下了重重的笔墨。

2. 俄国数学家的贡献







切比雪夫和马尔可夫采用矩方法进行论证,而李亚普诺夫则采用拉普拉斯的路径基于特征函数进行论证。切比雪夫和马尔可夫更多地是将中心极限定理用来说明他们所提的矩方法。而李亚普诺夫则将中心极限定理本身看作是一个数学对象。第一个现代意义下的严格证明是由李亚普诺夫在 1901 年给出的。

在 1887 年,切比雪夫发表了一篇关于中心极限定理的文章。尽管这篇文章的证明并不够完善,但他不仅清晰地陈述了定理所需的条件同时首次将中心极限定理看作是极限定理,而之前的数学家更多地将中心极限定理看作是误差分布的近似。在 1898 年,马尔可夫指出他的老师切比雪夫的结论实际上还需要一个额外的条件,即参与求和的变量的方差不会趋于 0 。切比雪夫和马尔可夫论证规范化后的和式的各阶原点矩收敛到标准正态分布对应的原点矩。

作为切比雪夫的另一个学生,李亚普诺夫并没有延续切比雪夫和马尔可夫的矩方法,而是回到 1810 年拉普拉斯所引入的特征函数方法。尽管拉普拉斯给出的证明不够完善,但对于他所考虑的情形,给出完整的证明并不非常困难。因而直到接近 100 年之后才由李亚普诺夫给出严格的论证显得非常地奇特。而法国的大数学家柯西,约瑟夫·伯特兰德(Joseph Bertrand,1822-1900)和儒勒·昂利·庞加莱(Jules Henri Poincaré,1854-1912)却没能完成这一壮举。在李亚普诺夫条件下,李亚普诺夫论证规范化后的和式的特征函数收敛到标准正态分布的特征函数。和拉普拉斯不同的是,他意识到特征函数和分布函数之间的关联。实际上莱维连续性定理已暗含在他的证明中。由于李亚普诺夫所得中心极限定理结果非常重要,现将其陈述如下:



3. 中心极限定理历史的第三个篇章

第三个篇章发生在 1920-1937 。第一次世界大战结束后,概率论变得愈发重要,而中心极限定理也已变成数学领域的一个重要研究对象。匈牙利数学家乔治·波利亚(George Pólya, 1887-1985)意识到中心极限定理的重要性和普遍存在性,给出了“中心”这一名字。



在 1922 年,芬兰数学家贾尔·瓦尔德马·林德伯格(Jarl Waldemar Lindeberg, 1876-1932)给出了中心极限定理的一个新的证明。由于该结果的重要性,现将其陈述如下:



林德伯格条件一般来讲更弱,但有时不太容易验证。可以证明李亚普诺夫条件可推出林德伯格条件。从而一般倾向使用李亚普诺夫-中心极限定理。



林德伯格给出了中心极限定理的充分条件,而泊松已经表明中心极限定理有时并不成立。美国数学家威廉·费勒(William Feller, 1906-1970)在转入概率论的研究不久就对中心极限定理的充要条件进行了回答。他的结果现已被称为林德伯格-费勒-中心极限定理。因为他使用林德伯格条件。结论如下:





在同一年,法国数学家保罗·皮埃尔·莱维(Paul Pierre Lévy, 1886-1971)也对中心极限定理的充要条件独立地进行了研究并得出了类似的结果。莱维对于他的工作未被给予足够的肯定表示失望“I shall never have had any luck with the Gaussian distribution”。费勒的工作受到了莱维在 1925 年的专著的影响,使用特征函数作为分析工具。而莱维反而放弃了他所擅长的特征函数手段而转而采用他所新提出的“集中”和“分散”作为分析手段。尽管莱维的工作发表时间晚于费勒,但他的投稿时间要早于费勒。

费勒和莱维的结果需要假定“若两个独立的随机变量的和服从正态分布则它们分别服从正态分布”。在 1936 年,瑞典数学家哈拉尔德·克拉梅尔(Harald Cramér, 1893-1985)对这一假定进行了证明。而在 1937 年,费勒和莱维利用克拉梅尔的结果更新了他们的证明。

4. 总结

我们看到尽管法国数学家尤其是拉普拉斯对正态分布做出了巨大贡献,但这一分布却被冠上了德国大数学家卡尔·弗里德里希·高斯(Carolus Fridericus Gauss, 1777-1855)的大名。而高斯对中心极限定理并没有做过相关的论证。一方面高斯关于最小二乘的工作使得正态分布更加为人所知,另一方面则可能是法国数学界对中心极限定理的不够重视。比如法国数学界埃米尔·博雷尔(Emile Borel, 1871-1956)认为关于中心极限定理所得结果的重要性和为此付出的努力并不相匹配,同时还认为在实际中所需的条件难以验证。

而更多数学家的工作由于通讯的不便使得优先权产生了一定争议。不论如何通过众多伟大数学家的不懈努力,对于独立随机变量序列而言,中心极限定理的大厦终于基本建立了起来!

参考文献

[1] Hans Fischer. A History of the Central Limit Theorem From Classical to Modern Probability Theory, Springer New York, NY, 2011.

[2] A History of the Central Limit Theorem, Fanni Plenar, 2019.

本文转载自微信公众号“郭老师统计小课堂”。

郭旭 返朴 2024 年 12 月 03 日 08:00 北京

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
您需要登录后才可以回帖 登录 | 注册

本版积分规则

LaTEX预览输入 教程 符号库 加行内标签 加行间标签 
对应的 LaTEX 效果:

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-19 05:21 , Processed in 0.108524 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表
\frac{\square}{\square}\sqrt{\square}\square_{\baguet}^{\baguet}\overarc{\square}\ \dot{\baguet}\left(\square\right)\binom{\square}{\square}\begin{cases}\square\\\square\end{cases}\ \begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\to\Rightarrow\mapsto\alpha\ \theta\ \pi\times\div\pm\because\angle\ \infty
\frac{\square}{\square}\sqrt{\square}\sqrt[\baguet]{\square}\square_{\baguet}\square^{\baguet}\square_{\baguet}^{\baguet}\sum_{\baguet}^{\baguet}\prod_{\baguet}^{\baguet}\coprod_{\baguet}^{\baguet}\int_{\baguet}^{\baguet}\lim_{\baguet}\lim_{\baguet}^{\baguet}\bigcup_{\baguet}^{\baguet}\bigcap_{\baguet}^{\baguet}\bigwedge_{\baguet}^{\baguet}\bigvee_{\baguet}^{\baguet}
\underline{\square}\overline{\square}\overrightarrow{\square}\overleftarrow{\square}\overleftrightarrow{\square}\underrightarrow{\square}\underleftarrow{\square}\underleftrightarrow{\square}\dot{\baguet}\hat{\baguet}\vec{\baguet}\tilde{\baguet}
\left(\square\right)\left[\square\right]\left\{\square\right\}\left|\square\right|\left\langle\square\right\rangle\left\lVert\square\right\rVert\left\lfloor\square\right\rfloor\left\lceil\square\right\rceil\binom{\square}{\square}\boxed{\square}
\begin{cases}\square\\\square\end{cases}\begin{matrix}\square&\square\\\square&\square\end{matrix}\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}\begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\begin{Bmatrix}\square&\square\\\square&\square\end{Bmatrix}\begin{vmatrix}\square&\square\\\square&\square\end{vmatrix}\begin{Vmatrix}\square&\square\\\square&\square\end{Vmatrix}\begin{array}{l|l}\square&\square\\\hline\square&\square\end{array}
\to\gets\leftrightarrow\nearrow\searrow\downarrow\uparrow\updownarrow\swarrow\nwarrow\Leftarrow\Rightarrow\Leftrightarrow\rightharpoonup\rightharpoondown\impliedby\implies\Longleftrightarrow\leftharpoonup\leftharpoondown\longleftarrow\longrightarrow\longleftrightarrow\Uparrow\Downarrow\Updownarrow\hookleftarrow\hookrightarrow\mapsto
\alpha\beta\gamma\Gamma\delta\Delta\epsilon\varepsilon\zeta\eta\theta\Theta\iota\kappa\varkappa\lambda\Lambda\mu\nu\xi\Xi\pi\Pi\varpi\rho\varrho\sigma\Sigma\tau\upsilon\Upsilon\phi\Phi\varphi\chi\psi\Psi\omega\Omega\digamma\vartheta\varsigma\mathbb{C}\mathbb{H}\mathbb{N}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{Z}\Re\Im\aleph\partial\nabla
\times\cdot\ast\div\pm\mp\circ\backslash\oplus\ominus\otimes\odot\bullet\varnothing\neq\equiv\not\equiv\sim\approx\simeq\cong\geq\leq\ll\gg\succ\prec\in\ni\cup\cap\subset\supset\not\subset\not\supset\notin\not\ni\subseteq\supseteq\nsubseteq\nsupseteq\sqsubset\sqsupset\sqsubseteq\sqsupseteq\sqcap\sqcup\wedge\vee\neg\forall\exists\nexists\uplus\bigsqcup\bigodot\bigotimes\bigoplus\biguplus\bigcap\bigcup\bigvee\bigwedge
\because\therefore\angle\parallel\perp\top\nparallel\measuredangle\sphericalangle\diamond\diamondsuit\doteq\propto\infty\bowtie\square\smile\frown\bigtriangledown\triangle\triangleleft\triangleright\bigcirc \wr\amalg\models\preceq\mid\nmid\vdash\dashv\nless\ngtr\ldots\cdots\vdots\ddots\surd\ell\flat\sharp\natural\wp\clubsuit\heartsuit\spadesuit\oint\lfloor\rfloor\lceil\rceil\lbrace\rbrace\lbrack\rbrack\vert\hbar\aleph\dagger\ddagger

MathQuill输入:

Latex代码输入: