数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 36|回复: 9

\(\Huge^\star\textbf{ 吃屎成痴: 不知}\color{red}{\textbf{发散即不收敛}}\)

[复制链接]
发表于 2025-12-8 03:13 | 显示全部楼层 |阅读模式
本帖最后由 elim 于 2025-12-9 09:16 编辑


发散序列就是不收敛序列, 就是不趋于任何实数因而不趋于任何自然数的序列.\(\{n\}\)发散非常容易证明因而成为数学人的共识.所以\(\lim n\)不是自然数(否则\(\{n\}\)收敛至该数).
没有最笨, 只有更笨 春霞痴劲日见攀升

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2025-12-8 04:22 | 显示全部楼层
自然数列发散这是数学人的共识,但自然数列发散并不能说明\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)!凡《数学分析》教科书都要讲\(n\to\infty\),若只把\(\infty\)解读成不存在,那么作为数列\(a_n\)的脚标在\(n\to\infty\)也就不存在,于是无论是数列收敛还是发散在\(n\to\infty\)处讨论\(a_n\)的值都没有意义,当然这也不是《数学分析》所需要的。因此,无论是哪家的《数学分析》,都不会否认\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!其实,这点常识elim还是有的,只不过为了圆【无穷交就是一种骤变】、【1/n永远不等于0】的谎话而拒不承认罢了。
回复 支持 反对

使用道具 举报

发表于 2025-12-8 12:53 | 显示全部楼层
自然数列发散这是数学人的共识,但自然数列发散并不能说明\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)!凡《数学分析》教科书都要讲\(n\to\infty\),若只把\(\infty\)解读成不存在,那么作为数列\(a_n\)的脚标在\(n\to\infty\)也就不存在,于是无论是数列收敛还是发散在\(n\to\infty\)处讨论\(a_n\)的值都没有意义,当然这也不是《数学分析》所需要的。因此,无论是哪家的《数学分析》,都不会否认\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!其实,这点常识elim还是有的,只不过为了圆【无穷交就是一种骤变】、【1/n永远不等于0】的谎话而拒不承认罢了。
回复 支持 反对

使用道具 举报

发表于 2025-12-8 12:59 | 显示全部楼层
自然数列发散这是数学人的共识,但自然数列发散并不能说明\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)!凡《数学分析》教科书都要讲\(n\to\infty\),若只把\(\infty\)解读成不存在,那么作为数列\(a_n\)的脚标在\(n\to\infty\)也就不存在,于是无论是数列收敛还是发散在\(n\to\infty\)处讨论\(a_n\)的值都没有意义,当然这也不是《数学分析》所需要的。因此,无论是哪家的《数学分析》,都不会否认\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!其实,这点常识elim还是有的,只不过为了圆【无穷交就是一种骤变】、【1/n永远不等于0】的谎话而拒不承认罢了。
回复 支持 反对

使用道具 举报

发表于 2025-12-8 13:00 | 显示全部楼层
自然数列发散这是数学人的共识,但自然数列发散并不能说明\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)!凡《数学分析》教科书都要讲\(n\to\infty\),若只把\(\infty\)解读成不存在,那么作为数列\(a_n\)的脚标在\(n\to\infty\)也就不存在,于是无论是数列收敛还是发散在\(n\to\infty\)处讨论\(a_n\)的值都没有意义,当然这也不是《数学分析》所需要的。因此,无论是哪家的《数学分析》,都不会否认\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!其实,这点常识elim还是有的,只不过为了圆【无穷交就是一种骤变】、【1/n永远不等于0】的谎话而拒不承认罢了。
回复 支持 反对

使用道具 举报

发表于 2025-12-8 14:27 | 显示全部楼层

        为回应新Berkeley主义的责难,徐利治先生在《论无限》一书提出了〖只要函数的极限存在就一定可达〗的观点。
        数学人都知道,滿足\(\displaystyle\lim_{x\to x_0^+}f(x)=\)\(\displaystyle\lim_{x\to x_0^-}f(x)=\)\(\displaystyle\lim_{x\to x_0}f(x)\)连等式的函数叫连续函数。为记忆方便我们把这个连等式写成\(f(x_0^-)=f(x_0^+)=\)\(f(x_0)\).根据连续函数的定义,易证连续函数在其连续区间内各点都满足〖只要函数的极限存在,就一定可达〗!
       不过函数在某点极限存在,比函数在某点连续条件弱些,即函数在a点极限存在,只要求\(f(a^+)=f(a^-)=定数L\),于是徐利治先生给出了“可连续化函数”的概念(即采用补充定义的方法,去掉原函数的可去间断点),以及闭区间端点的左右连续概念,使得函数在整个定义域内成为“可连续化函数”(参见徐利治《论无限》P20页,第11至第17行).根据连续函数在其定义域各点都有\(f(a)=f(a^-)=\)\(f(a^+)\)证得只要函数极限存在,就一定可达)!对于函数\(f(x)=\tfrac{1}{x}\).因为\(f(∞)=f(-∞)=\)\(f(+∞)\)\(=0\),所以函数\(f(x)=\tfrac{1}{x}\)在\(x\to\infty\)时极限可达!由于\(\mathbb{N}\subset (0,\infty)\)且\(\displaystyle\lim_{n \to \infty}\tfrac{1}{n}\)\(=\)\(\displaystyle\lim_{x \to \infty}\tfrac{1}{x}=0\)所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!

回复 支持 反对

使用道具 举报

发表于 2025-12-9 06:13 | 显示全部楼层
自然数列发散这是数学人的共识,但自然数列发散并不能说明\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)!凡《数学分析》教科书都要讲\(n\to\infty\),若只把\(\infty\)解读成不存在,那么作为数列\(a_n\)的脚标在\(n\to\infty\)也就不存在,于是无论是数列收敛还是发散在\(n\to\infty\)处讨论\(a_n\)的值都没有意义,当然这也不是《数学分析》所需要的。因此,无论是哪家的《数学分析》,都不会否认\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!其实,这点常识elim还是有的,只不过为了圆【无穷交就是一种骤变】、【1/n永远不等于0】的谎话而拒不承认罢了。
回复 支持 反对

使用道具 举报

发表于 2025-12-11 06:10 | 显示全部楼层

        一、关于\(\infty和n\to\infty\)的定义:
         根据Weierstrass 极限定义:\(\displaystyle\lim_{n \to \infty}x_n=a\)\(\iff\)\(对\forall ε>0,当n>\)\(N_ε时,有|x_n-a|<ε\)可得如下定义:
        〖定义1:〗对于任意给定的无穷小量ε,称集合\(\{n|n>N_ε,N_ε\in\mathbb{N}\}\)为无穷大,记为\(\infty\).
        〖定义2:〗\(若自然数\forall k\in\{n|n>N_ε,N_ε\in\mathbb{N}\}\),则称\(k\)趋向于无穷大,记为\(k\to\infty\).
        根据定义1和定义2,易知:
        \(\mathbb{N}=\{n|n\le N_ε,N_ε\in\mathbb{N}\}\cup\{n|n>N_ε,N_ε\in\mathbb{N}\}\).
         elim,Weierstrass 极限的“ ε—N”定义,任何一本讲极限的教科书上都有介绍。其符号表达式\(\displaystyle\lim_{n \to \infty}x_n=a\)\(\iff\)\(对\forall ε>0,\exists\)正整数\(N_ε\),\(当n>\)\(N_ε,有|x_n-a|<ε\)参见同济大学《高等数学》第七版 上册P21页第25行。由于ε是任意给定的无穷小量,所以\(N_ε(=\tfrac{1}{ε})\)则为无穷大量,其依据是无穷小量与无穷大量互为倒数关系,所以称集合\(\{n|n>N_ε,N_ε\in\mathbb{N}\}\)为无穷大,并记为\(\infty\)是自洽的。虽然elim不看好这两个定义,但这两个定义仍是规范严谨的。同时定义1基础上的定义2也对\(n\to\infty\)作出了定量描述。总之定义1和定义2不但给出了出处,也对Weierstrass 极限的“ ε—N”定义也作了更深层次地思考,比起e氏的\(\displaystyle\lim_{n \to \infty}n=Sup\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=Max\mathbb{N}\)……等定义严谨多了。elim攻击、谩骂了我两年多;\(\displaystyle\lim_{n \to \infty}n=\infty\)用了不少于万次,但至今也没有给出什么叫无穷大,什么叫趋向于无穷大。所以elim关于无穷大的一切论证都是扯淡!
        二、关于\(\mathbb{N}\)是无限集,所以\(\mathbb{N}\)必含无穷数地推导
       【证明】设自然数列\(\{a_n\}\)的通项公式为:\(a_n=n\),由于\(\displaystyle\lim_{n \to \infty}\tfrac{1}{n}=0\),所以对\(\forall ε>0,\exists\)正整数\(N_ε\),使\(\displaystyle\lim_{n \to \infty}n\)\(\in\) \(\{n|n>N_ε,N_ε\in\mathbb{N}\}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!所以既然\(\mathbb{N}\)是无限集,那么\(\mathbb{N}\)就必含无穷数。
        春风晚霞提请众网友注意:最小无穷序数\(\color{red}{\omega是最小超穷数,不是最小无穷}\)\(\color{red}{数!}\),最小无穷基数\(\color{red}{\aleph_0,也不是最小无穷数!}\),因为\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2^n\)……远小于\(\omega\)或\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2^n\)……远小于\(\aleph_0\)!所以\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2^n\)……属于\(\mathbb{N}\)!还有陶哲轩或AI所说“每个自然数都是有限数”的“限“是指每个自然数的后继!有限基数的“限”是指最小无穷基数\(\aleph_0\)!并且【自然数皆有限数】只能勉强算作是自然数的一个特殊性质,不能算作自然数的定义。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-12-12 04:09 | 显示全部楼层
发散序列就是不收敛序列, 就是不趋于任何实数因而不趋于任何自然数的序列. \(\{n\}\)发散非常容易证明因而成为数学人的共识. 故\(\lim n\)不是自然数(否则\(\{n\}\)收敛至该数).
没有最笨只有更笨春霞痴态日见攀升
回复 支持 反对

使用道具 举报

发表于 2025-12-12 06:14 | 显示全部楼层
自然数列发散这是数学人的共识,但自然数列发散并不能说明\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)!凡《数学分析》教科书都要讲\(n\to\infty\),若只把\(\infty\)解读成不存在,那么作为数列\(a_n\)的脚标在\(n\to\infty\)也就不存在,于是无论是数列收敛还是发散在\(n\to\infty\)处讨论\(a_n\)的值都没有意义,当然这也不是《数学分析》所需要的。因此,无论是哪家的《数学分析》,都不会否认\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!其实,这点常识elim还是有的,只不过为了圆【无穷交就是一种骤变】、【1/n永远不等于0】的谎话而拒不承认罢了。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-12-12 07:18 , Processed in 0.092728 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表