|
|
(1)sinxcosx=0.5sin2x∈[-1/2,1/2]
(2)设x=π/4-t
y=√2sin(x+π/4)/(1+0.5sin2x)
y=√2sin(π/4-t+π/4)/[1+0.5sin2(π/4-t)]
y=√2cost/(1+0.5cos2t)
y=√2cost/[1+(cost)^2-0.5]
y=2√2cost/[1+2(cost)^2]
y+2y(cost)^2-2√2cost=0
2y(cost)^2-2√2cost+y=0
∵x∈R
∴t=π/4-t亦∈R
∴cost∈[-1,1]
令g(cost)=2y(cost)^2-2√2cost+y
方程在[-1,1]上至少有一个根
所以Δ=8-8y^2≥0→y∈[-1,1]
且g(-1)g(1)≤0
即(2y+2√2+y)(2y-2√2+y) ≤0
9y^2-8≤0
y∈[-2√2/3,2√2/3]
而[-1,1]∩[-2√2/3,2√2/3]= [-2√2/3,2√2/3]
∴y∈[-2√2/3,2√2/3]
(3)先求不定积分
由(2)知原式=∫-2√2cost/[1+2(cost)^2]dt=-2√2∫1/[1+2(1-sint^2)]dsint=-2√2∫1/[3-2(sint)^2]dsint=2√2∫1/[2(sint)^2-3]dsint=2√2∫[1/(√2sint-√3)-1/(√2sint+√3)]/2√3dsint=√2/√3[(1/√2)ln(√2sint-√3)-[(1/√2)ln(√2sint+√3)=1/√3ln(|√2sint-√3)/(√2sint+√3|)+C
x=0时
1/√3ln|-√3)/√3|=1/√3ln1=0
x=π/6时
1/√3ln|√2/2-√3)/√2/2+√3|=1/√3ln|(1/2+3-√6)/(1/2-3)|=1/√3ln(1+6-2√6)/5
=1/√3ln(√6-1)^2/5
=2/√3ln(√6-1)/√5
两式相减得2/√3ln(√6-1)/√5
答案有点怪不知对不对
|
|