|
|
f(x)=(1/3)x^3-2x^2+ax+b
f'(x)=x^2-4x+a
f(0)=b f'(0)=a 该切线为y=ax+b
f(c)=37/2=ac+b
(1/3)c^3-2c^2=0
(c,37/2)为另一交点 c≠0 c=6
6a+b=37/2
p+q=4 pq=a
p^2+q^2=(p+q)^2-2pq=16-2a
p^3+q^3=(p+q)^3-3pq(p+q)=64-12a
(1/3)p^3-2p^2+ap+b+(1/3)q^3-2q^2+aq+b=7/3
(1/3)(64-12a)-2(16-2a)+4a+2b=7/3
4a+2b=13
a=3,b=1/2 f(x)=(1/3)x^3-2x^2+3x+1/2
p,q=1,3 f(1),f(3)=11/6,1/2 |
|