数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 4782|回复: 12

从奇点规律来证明哥德巴赫偶数猜想

[复制链接]
发表于 2015-4-9 08:58 | 显示全部楼层 |阅读模式
从奇点规律来证明哥德巴赫偶数猜想

                   文/施承忠


在第1个奇点内部
最小D(12)=1
最大D(34)=4
D(4*3^2)=D(36)=4

在第2个奇点内部
最小D(68)=2         
最大D(90)=9         
D(4*5^2)=D(100)=6

在第3个奇点内部
最小D(128)=3      
最大D(420)=30     
D(4*11^2)=D(484)=14
       .
       .
       .
在第k个奇点内部
最小D(x)=ak      
最大D(x)=bk     
D(4*qk^2)=ck

在第k+1个奇点内部
最小D(x)=ak+1      
最大D(x)=bk+1     
D(4*qk^2)=ck+1

在D(x)中我们总是筛去
pmod(3)≡a3
pmod(5)≡a5
pmod(7)≡a7
     .
     .
     .
pmod(pk)≡apk
在T(x)中我们总是筛去
pmod(3)≡3-2
pmod(5)≡5-2
pmod(7)≡7-2
     .
     .
     .
pmod(pk)≡pk-2
当x趋向无穷时,它们的筛剩余是非常相近的.

因为在第1个奇点内部
最小D(x)=a1
最大D(x)=b1     
D(4*q1^2)=c1

在第2个奇点内部
最小D(x)=a2
最大D(x)=b2     
D(4*q2^2)=c2

在第3个奇点内部
最小D(x)=a3
最大D(x)=b3     
D(4*q3^2)=c3

a3>a2>a1
b3>b2>b1
c3>c2>c1
当x趋向无穷时这种规律将愈加明显,所以必然有
ak+1>ak
bk+1>bk
ck+1>ck
并且有T(2*3^2)=T(18)=T(13)=(3,5)(5,7)(11,13)
D(30)=T(13)=3
30=7+23
   11+19
   13+17
7,11,13≈3,5,11
并且有T(2*5^2)=T(50)≈T(73)=(3,5)(5,7)(11,13)(17,19)(29,31)(41,43)(59,61)(71,73)
3+5=8
D(84)=T(73)=8
84=5+79
   11+73
   13+71
   17+67
   23+61
   31+53
   37+47
   41+43
(5,11,13,17,23,31,37,41)≈(3,5,11,17,29,41,59,71)   
并且有T(2*11^2)≈T(242)≈T(283)=(3,5)(5,7)(11,13)(17,19)(29,31)(41,43)(59,61)(71,73)(101,103)(107,109)(137,139)(149,151)
(179,181)(191,193)(197,199)(227,229)(239,241)(269,271)(281,283)
3+5+11=19
D(432)=T(283)=19
432=11+421
    13+419
    23+409
    31+401
    43+389
    53+379
    59+373
    73+359
    79+353
    83+349
    101+331
    139+293
    149+283
    151+281
    163+269
    181+251
    191+241
    193+239
    199+233
(11,13,23,31,43,53,59,73,79,83,101,139,149,151,163,181,191,193,199)≈
(3,5,11,17,29,41,59,71,101,107,139,149,179,191,197,227,239,269,281)
证毕.

发表于 2015-4-9 15:01 | 显示全部楼层
近期想把我的文章认真分析一番(已在博客上发了几篇),欢迎批评指导!
 楼主| 发表于 2015-4-12 15:46 | 显示全部楼层
    哥德巴赫猜想偶数奇点性状


【序号【4*qk^2【D(4*qk^2)【c*∑qk】=D(4*qk^2)【qk是不大于qk的所有孪生素数中较小的一个】

最小D(12)=0.33333*3=1
最大D(34)=1.33333*3=4
(1)4*3^2=36【D(4*3^2)=4【1.33333*3=4

最小D(68)=0.25000*8=2         
最大D(90)=1.12500*8=9         
(2)4*5^2=100【D(4*5^2)=6【0.75000*8=6

最小D(128)=0.15789*19=3      
最大D(420)=1.57894*19=30     
(3)4*11^2=484【D(4*11^2)=14【0.73684*19=14

最小D(488)=0.25000*36=9     
最大D(1140)=1.61111*36=58   
(4)4*17^2=1156【D(4*17^2)=22【0.61111*36=22

最小D(1412)=0.27692*65=18        
最大D(3150)=2.12307*65=138      
(5)4*29^2=3364【D(4*29^2)=47【0.72307*65=47

最小D(3632)=0.37735*106=40
最大D(6720)=2.25471*106=239
(6)4*41^2=6724【D(4*41^2)=71【0.66981*106=71

最小D(7292)=0.40606*165=67
最大D(13860)=2.70303*165=446
(7)4*59^2=13924【D(4*59^2)=131【0.79393*165=131

最小D(14138)=0.49576*236=117
最大D(19110)=2.33050*236=559
(8)4*71^2=20164【D(4*71^2)=175【0.74152*236=175

最小D(20348)=0.45994*337=155
最大D(39270)=3.20178*337=1079
(9)4*101^2=40804【D(4*101^2)=309【0.91691*337=309

最小D(40814)=0.63063*444=280
最大D(43890)=2.63963*444=1172
(10)4*107^2=45796【D(4*107^2)=333【0.75000*444=333
发表于 2015-4-13 08:52 | 显示全部楼层
奇点的规律是由Dnp系统决定的。
 楼主| 发表于 2015-4-13 09:47 | 显示全部楼层
(11)4*137^2=75076【D(4*137^2)=483【0.83132*581=483
(12)4*149^2=88804【D(4*149^2)=549【0.75205*730=549
(13)4*179^2=128164【D(4*179^2)=755【0.83058*909=755
(14)4*191^2=145924【D(4*191^2)=841【0.76454*1100=841
(15)4*197^2=155236【D(4*197^2)=852【0.65690*1297=852
(16)4*227^2=206116【D(4*227^2)=1083【0.71062*1524=1083
(17)4*239^2=228484【D(4*239^2)=1195【0.67782*1763=1195
(18)4*269^2=289444【D(4*269^2)=1439【0.70816*2032=1439
(19)4*281^2=315844【D(4*281^2)=1544【0.66753*2313=1544
(20)4*311^2=386884【D(4*311^2)=1830【0.69740*2624=1830
(21)4*347^2=481636【D(4*347^2)=2219【0.74688*2971=2219
(22)4*419^2=702244【D(4*419^2)=2977【0.87817*3390=2977
(23)4*431^2=743044【D(4*431^2)=3214【0.84114*3821=3214
(24)4*461^2=850084【D(4*461^2)=3499【0.81714*4282=3499
(25)4*521^2=1085764【D(4*521^2)=4343【0.90422*4803=4343
(26)4*569^2=1295044【D(4*569^2)=5060【0.94192*5372=5060
(27)4*599^2=1435204【D(4*599^2)=5492【0.91977*5971=5492
(28)4*617^2=1522756【D(4*617^2)=5857【0.88904*6588=5857
(29)4*641^2=1643524【D(4*641^2)=6210【0.85903*7229=6210
(30)4*659^2=1737124【D(4*659^2)=6507【0.82492*7888=6507
(31)4*809^2=2617924【D(4*809^2)=9154【1.05254*8697=9154
(32)4*821^2=2696164【D(4*821^2)=9361【0.98350*9518=9361
(33)4*827^2=2735716【D(4*827^2)=9551【0.92324*10345=9551
(34)4*857^2=2937796【D(4*857^2)=10020【0.89448*11202=10020
(35)4*881^2=3104644【D(4*881^2)=10608【0.87792*12083=10608
(36)4*1019^2=4153444【D(4*1019^2)=13708【1.04625*13102=13708
(37)4*1031^2=4251844【D(4*1031^2)=14018【0.99186*14133=14018
(38)4*1049^2=4401604【D(4*1049^2)=14451【0.95185*15182=14451
(39)4*1061^2=4502884【D(4*1061^2)=14736【0.90722*16243=14736
(40)4*1091^2=4761124【D(4*1091^2)=15350【0.88554*17334=15350
(41)4*1151^2=5299204【D(4*1151^2)=16768【0.90711*18485=16768
(42)4*1229^2=6041764【D(4*1229^2)=18859【0.95562*19714=18859
(43)4*1277^2=6522916【D(4*1277^2)=20045【0.95493*20991=20045
(44)4*1289^2=6646084【D(4*1289^2)=20440【0.91741*22280=20440
(45)4*1301^2=6770404【D(4*1301^2)=20856【0.88444*23581=20856
(46)4*1319^2=6959044【D(4*1319^2)=21321【0.85626*24900=21321
(47)4*1427^2=8145316【D(4*1427^2)=24354【0.92505*26327=24354
(48)4*1451^2=8421604【D(4*1451^2)=25173【0.90622*27778=25173
(49)4*1481^2=8773444【D(4*1481^2)=26088【0.89162*29259=26088
(50)4*1487^2=8844676【D(4*1487^2)=26349【0.85698*30746=26349
(51)4*1607^2=10329796【D(4*1607^2)=29943【0.92550*32353=29943
(52)4*1619^2=10484644【D(4*1619^2)=30407【0.89506*33972=30407
(53)4*1667^2=11115556【D(4*1667^2)=31904【0.89519*35639=31904
(54)4*1697^2=11519236【D(4*1697^2)=32960【0.88279*37336=32960
(55)4*1721^2=11847364【D(4*1721^2)=33606【0.86043*39057=33606
(56)4*1787^2=12773476【D(4*1787^2)=36202【0.88634*40844=36202
(57)4*1871^2=14002564【D(4*1871^2)=38868【0.90993*42715=38868
(58)4*1877^2=14092516【D(4*1877^2)=38985【0.87425*44592=38985
(59)4*1931^2=14915044【D(4*1931^2)=41034【0.88201*46523=41034
(60)4*1949^2=15194404【D(4*1949^2)=41717【0.86064*48472=41717
(61)4*1997^2=15952036【D(4*1997^2)=43664【0.86516*50469=43664
(62)4*2027^2=16434916【D(4*2027^2)=44722【0.85191*52496=44722
(63)4*2081^2=17322244【D(4*2081^2)=46950【0.86025*54577=46950
(64)4*2087^2=17422276【D(4*2087^2)=47556【0.83926*56664=47556
(65)4*2111^2=17825284【D(4*2111^2)=48013【0.81689*58775=48013
(66)4*2129^2=18130564【D(4*2129^2)=48769【0.80075*60904=48769
(67)4*2141^2=18335524【D(4*2141^2)=49551【0.78596*63045=49551
(68)4*2237^2=20016676【D(4*2237^2)=53081【0.81310*65282=53081
(69)4*2267^2=20557156【D(4*2267^2)=54331【0.80431*67549=54331
(70)4*2309^2=21325924【D(4*2309^2)=56251【0.80521*69858=56251
(71)4*2339^2=21883684【D(4*2339^2)=57457【0.79583*72197=57457
(72)4*2381^2=22676644【D(4*2381^2)=59359【0.79593*74578=59359
(73)4*2549^2=25989604【D(4*2549^2)=67155【0.87070*77127=67155
(74)4*2591^2=26853124【D(4*2591^2)=68708【0.86188*79718=68708
(75)4*2657^2=28238596【D(4*2657^2)=71695【0.87034*82375=71695
(76)4*2687^2=28879876【D(4*2687^2)=73339【0.86218*85062=73339
(77)4*2711^2=29398084【D(4*2711^2)=74518【0.84898*87773=74518
(78)4*2729^2=29789764【D(4*2729^2)=75308【0.83211*90502=75308
(79)4*2789^2=31114084【D(4*2789^2)=78355【0.83989*93291=78355
(80)4*2801^2=31382404【D(4*2801^2)=78988【0.82200*96092=78988
(81)4*2969^2=35259844【D(4*2969^2)=87432【0.88260*99061=87432
(82)4*2999^2=35976004【D(4*2999^2)=88830【0.87037*102060=88830
(83)4*3119^2=38912644【D(4*3119^2)=95230【0.90540*105179=95230
(84)4*3167^2=40119556【D(4*3167^2)=97802【0.90268*108346=97802
(85)4*3251^2=42276004【D(4*3251^2)=102291【0.91661*111597=102291
(86)4*3257^2=42432196【D(4*3257^2)=102770【0.89478*114854=102770
(87)4*3299^2=43533604【D(4*3299^2)=105168【0.89010*118153=105168
(88)4*3329^2=44328964【D(4*3329^2)=106720【0.87848*121482=106720
(89)4*3359^2=45131524【D(4*3359^2)=108242【0.86703*124841=108242
(90)4*3371^2=45454564【D(4*3371^2)=109170【0.85148*128212=109170
(91)4*3389^2=45941284【D(4*3389^2)=110484【0.83953*131601=110484
(92)4*3461^2=47914084【D(4*3461^2)=114347【0.84662*135062=114347
(93)4*3467^2=48080356【D(4*3467^2)=115029【0.83036*138529=115029
(94)4*3527^2=49758916【D(4*3527^2)=118090【0.83129*142056=118090
(95)4*3539^2=50098084【D(4*3539^2)=118748【0.81560*145595=118748
(96)4*3557^2=50608996【D(4*3557^2)=119926【0.80405*149152=119926
(97)4*3581^2=51294244【D(4*3581^2)=121070【0.79269*152733=121070
(98)4*3671^2=53904964【D(4*3671^2)=126979【0.81186*156404=126979
(99)4*3767^2=56761156【D(4*3767^2)=132909【0.82979*160171=132909
(100)4*3821^2=58400164【D(4*3821^2)=135695【0.82744*163992=135695
 楼主| 发表于 2015-4-14 15:07 | 显示全部楼层
(101)4*3851^2=59320804【D(4*3851^2)=138255【0.82371*167843=138255
(102)4*3917^2=61371556【D(4*3917^2)=142217【0.82799*171760=142217
(103)4*3929^2=61748164【D(4*3929^2)=143181【0.81496*175689=143181
(104)4*4001^2=64032004【D(4*4001^2)=147390【0.82024*179690=147390
(105)4*4019^2=64609444【D(4*4019^2)=148727【0.80957*183709=148727
(106)4*4049^2=65577604【D(4*4049^2)=151024【0.80435*187758=151024
(107)4*4091^2=66945124【D(4*4091^2)=153784【0.80158*191849=153784
(108)4*4127^2=68128516【D(4*4127^2)=155849【0.79524*195976=155849
(109)4*4157^2=69122596【D(4*4157^2)=158003【0.78948*200133=158003
(110)4*4217^2=71132356【D(4*4217^2)=161973【0.79262*204350=161973
(111)4*4229^2=71537764【D(4*4229^2)=162219【0.77773*208579=162219
(112)4*4241^2=71944324【D(4*4241^2)=163597【0.76871*212820=163597
(113)4*4259^2=72556324【D(4*4259^2)=165094【0.76052*217079=165094
(114)4*4271^2=72965764【D(4*4271^2)=165841【0.74922*221350=165841
(115)4*4337^2=75238276【D(4*4337^2)=170065【0.75354*225687=170065
(116)4*4421^2=78180964【D(4*4421^2)=175322【0.76191*230108=175322
(117)4*4481^2=80317444【D(4*4481^2)=180169【0.76801*234589=180169
(118)4*4517^2=81613156【D(4*4517^2)=183192【0.76615*239106=183192
(119)4*4547^2=82700836【D(4*4547^2)=184654【0.75785*243653=184654
(120)4*4637^2=86007076【D(4*4637^2)=191575【0.77157*248290=191575
(121)4*4649^2=86452804【D(4*4649^2)=192362【0.76050*252939=192362
(122)4*4721^2=89151364【D(4*4721^2)=197852【0.76788*257660=197852
(123)4*4787^2=91661476【D(4*4787^2)=202578【0.77188*262447=202578
(124)4*4799^2=92121604【D(4*4799^2)=203245【0.76051*267246=203245
(125)4*4931^2=97259044【D(4*4931^2)=213383【0.78398*272177=213383
(126)4*4967^2=98684356【D(4*4967^2)=215934【0.77914*277144=215934
(127)4*5009^2=100360324【D(4*5009^2)=219991【0.77968*282153=219991
(128)4*5021^2=100841764【D(4*5021^2)=220145【0.76659*287174=220145
(129)4*5099^2=103999204【D(4*5099^2)=226728【0.77574*292273=226728
(130)4*5231^2=109453444【D(4*5231^2)=237004【0.79664*297504=237004
(131)4*5279^2=111471364【D(4*5279^2)=240828【0.79538*302783=240828
(132)4*5417^2=117375556【D(4*5417^2)=252003【0.81766*308200=252003
(133)4*5441^2=118417924【D(4*5441^2)=254071【0.81006*313641=254071
(134)4*5477^2=119990116【D(4*5477^2)=256750【0.80456*319118=256750
(135)4*5501^2=121044004【D(4*5501^2)=259082【0.79811*324619=259082
(136)4*5519^2=121837444【D(4*5519^2)=260609【0.78939*330138=260609
(137)4*5639^2=127193284【D(4*5639^2)=270926【0.80686*335777=270926
(138)4*5651^2=127735204【D(4*5651^2)=271210【0.79434*341428=271210
(139)4*5657^2=128006596【D(4*5657^2)=271931【0.78347*347085=271931
(140)4*5741^2=131836324【D(4*5741^2)=279185【0.79128*352826=279185
(141)4*5849^2=136843204【D(4*5849^2)=288684【0.80486*358675=288684
(142)4*5867^2=137686756【D(4*5867^2)=290488【0.79685*364542=290488
(143)4*5879^2=138250564【D(4*5879^2)=291383【0.78662*370421=291383
(144)4*6089^2=148303684【D(4*6089^2)=310010【0.82337*376510=310010
(145)4*6131^2=150356644【D(4*6131^2)=314377【0.82159*382641=314377
(146)4*6197^2=153611236【D(4*6197^2)=320100【0.82322*388838=320100
(147)4*6269^2=157201444【D(4*6269^2)=326571【0.82653*395107=326571
(148)4*6299^2=158709604【D(4*6299^2)=329111【0.81989*401406=329111
(149)4*6359^2=161747524【D(4*6359^2)=335192【0.82202*407765=335192
(150)4*6449^2=166358404【D(4*6449^2)=343332【0.82887*414214=343332
(151)4*6551^2=171662404【D(4*6551^2)=353959【0.84122*420765=353959
(152)4*6569^2=172607044【D(4*6569^2)=355006【0.83074*427334=355006
(153)4*6659^2=177369124【D(4*6659^2)=362899【0.83618*433993=362899
(154)4*6689^2=178970884【D(4*6689^2)=366136【0.83083*440682=366136
(155)4*6701^2=179613604【D(4*6701^2)=368137【0.82286*447383=368137
(156)4*6761^2=182844484【D(4*6761^2)=373577【0.82259*454144=373577
(157)4*6779^2=183819364【D(4*6779^2)=374651【0.81282*460923=374651
(158)4*6791^2=184470724【D(4*6791^2)=376530【0.80504*467714=376530
(159)4*6827^2=186431716【D(4*6827^2)=379648【0.80003*474541=379648
(160)4*6869^2=188732644【D(4*6869^2)=384480【0.79865*481410=384480
(161)4*6947^2=193043236【D(4*6947^2)=391303【0.80126*488357=391303
(162)4*6959^2=193710724【D(4*6959^2)=393290【0.79401*495316=393290
(163)4*7127^2=203176516【D(4*7127^2)=409754【0.81552*502443=409754
(164)4*7211^2=207994084【D(4*7211^2)=419187【0.82249*509654=419187
(165)4*7307^2=213568996【D(4*7307^2)=428764【0.82939*516961=428764
(166)4*7331^2=214974244【D(4*7331^2)=431255【0.82254*524292=431255
(167)4*7349^2=216031204【D(4*7349^2)=433482【0.81536*531641=433482
(168)4*7457^2=222427396【D(4*7457^2)=444357【0.82426*539098=444357
(169)4*7487^2=224220676【D(4*7487^2)=447286【0.81832*546585=447286
(170)4*7547^2=227828836【D(4*7547^2)=454141【0.81955*554132=454141
(171)4*7559^2=228553924【D(4*7559^2)=455837【0.81154*561691=455837
(172)4*7589^2=230371684【D(4*7589^2)=458317【0.80508*569280=458317
(173)4*7757^2=240684196【D(4*7757^2)=476757【0.82621*577037=476757
(174)4*7877^2=248188516【D(4*7877^2)=489930【0.83761*584914=489930
(175)4*7949^2=252746404【D(4*7949^2)=497640【0.83938*592863=497640
(176)4*8009^2=256576324【D(4*8009^2)=504747【0.84002*600872=504747
(177)4*8087^2=261598276【D(4*8087^2)=513241【0.84281*608959=513241
(178)4*8219^2=270207844【D(4*8219^2)=528437【0.85621*617178=528437
(179)4*8231^2=270997444【D(4*8231^2)=529835【0.84718*625409=529835
(180)4*8291^2=274962724【D(4*8291^2)=537333【0.84792*633700=537333
(181)4*8387^2=281367076【D(4*8429^2)=548773【0.85467*642087=548773
(182)4*8429^2=284192164【D(4*8429^2)=553095【0.85024*650516=553095
(183)4*8537^2=291521476【D(4*8537^2)=565432【0.85794*659053=565432
(184)4*8597^2=295633636【D(4*8597^2)=572606【0.85764*667650=572606
(185)4*8627^2=297700516【D(4*8627^2)=575952【0.85165*676277=575952
(186)4*8819^2=311099044【D(4*8819^2)=599329【0.87481*685096=599329
(187)4*8837^2=312370276【D(4*8837^2)=601259【0.86645*693933=601259
(188)4*8861^2=314069284【D(4*8861^2)=604418【0.86002*702794=604418
(189)4*8969^2=321771844【D(4*8969^2)=617197【0.86713*711763=617197
(190)4*8999^2=323928004【D(4*8999^2)=620992【0.86157*720762=620992
(191)4*9011^2=324792484【D(4*9011^2)=623141【0.85388*729773=623141
(192)4*9041^2=326958724【D(4*9041^2)=626286【0.84769*738814=626286
(193)4*9239^2=341436484【D(4*9239^2)=651294【0.87065*748053=651294
(194)4*9281^2=344547844【D(4*9281^2)=655813【0.86594*757334=655813
(195)4*9341^2=349017124【D(4*9341^2)=664455【0.86667*766675=664455
(196)4*9419^2=354870244【D(4*9419^2)=673853【0.86826*776094=673853
(197)4*9431^2=355775044【D(4*9431^2)=675497【0.85993*785525=675497
(198)4*9437^2=356227876【D(4*9437^2)=675909【0.85024*794962=675909
发表于 2015-4-23 10:17 | 显示全部楼层
本帖最后由 llz2008 于 2015-4-24 05:18 编辑

我认为我已经解决一些数论问题。这是我证明的连接http://www.mathchina.com/bbs/for ... &extra=page%3D1
不妨看看,若愿意的话可提出宝贵意见,大家一起完善。但不强人所难。
 楼主| 发表于 2015-4-29 21:10 | 显示全部楼层
请看:http://tieba.baidu.com/p/3688982376
 楼主| 发表于 2015-4-29 21:25 | 显示全部楼层
本帖最后由 小草 于 2015-4-29 13:26 编辑

http://tieba.baidu.com/p/3688982376从奇点规律来证明哥德巴赫偶数猜想
发表于 2015-4-29 21:32 | 显示全部楼层
如果哥猜不成立呢?
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-16 19:54 , Processed in 0.093557 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表