|
在(2*qk^2)^1±Δ中一定存在K(qk)个孪生素数
文/施承忠
这里K(qk)=q1+q2+q3+...+qk,其中q1,q2,q3,...,qk是所有不大于qk的所有孪生素数.
从下面的数据可以看出,只要存在一个孪生素数qk就一定存在K(qk)个孪生素数,这是从施承忠的大筛法定理中推出的.而这K(qk)个孪生素数远远大于k个孪生素数.
比如说q3=11,那么K(qk)=3+5+11=19,19>3.2*11^2=242,242^1.028513563=283.283=q19+2.
这是对旧孪生素数理论极大的挑战.虽然这是一种极初等的方法,但是它对于孪生素数问题的解决且是完美无缺的.一切高等的数学都是从初等数学中提升的.如果我们连初等的都做不好,怎么能做好高等的呢?
【序号】【孪生素数】【T(x)=x^s=K(qk)】【(2*qk^2)^s=K(qk)】【(2*qk^2)^1±Δ=q_K(qk)】
1【3】T(13)=13^0.428317341=3【18^0.380093766=3【18^0.887411576=13
2【5】T(73)=73^0.484666408=8【50^0.531551460=8【50^1.096736761=73
3【11】T(283)=283^0.521559946=19【242^0.536431478=19【242^1.028513563=283
4【17】T(1021)=1021^0.517211427=36【578^0.512313655=36【578^1.089465735=1021
5【29】T(2113)=2113^0.545253580=65【1682^0.561999736=65【1682^1.030712601=2113
6【41】T(4051)=4051^0.561405660=106【3362^0.574294555=106【3362^1.022958256=4051
7【59】T(7309)=7309^0.573904104=165【6962^0.577058920=165【6962^1.005497113=7309
8【71】T(12043)=12043^0.581491369=236【10082^0.592702467=236【10082^1.019279903=12043
9【101】T(19699)=19699^0.588581384=337【20402^0.586501586=337【20402^0.996466422=19699
10【107】T(27793)=27793^0.595729396=444【22898^0.607226124=444【22898^1.019298574=27793
11【137】T(38749)=38749^0.602445334=581【37538^0.604261357=581【37538^1.003014418=38749
12【149】T(52183)=52183^0.606953944=730【44402^0.616112514=730【44402^1.015089399=52183
13【179】T(70183)=70183^0.610487472=909【64082^0.615503711=909【64082^1.008216775=70183
14【191】T(88261)=88261^0.614948409=1100【72962^0.625402465=1100【72962^1.016999891=88261
15【197】T(107839)=107839^0.618533403=1297【77618^0.636597930=1297【77618^1.029205419=107839
16【227】T(130651)=130651^0.622149106=1524【103058^0.634935784=1524【103058^1,02055=130651
17【239】T(155863)=155863^0.625151734=1763【114242^0.641827623=1763【114242^1.026674947=155863
18【269】T(184999)=184999^0.628026832=2032【144722^0.641004079=2032【144722^1.020663523=184999
19【281】T(218083)=218083^0.630158072=2313【157922^0.647150669=2313【157922^1.026965610=218083
20【311】T(254929)=254929^0.632389697=2624【193442^0.646728647=2624【193442^1.022674230=254929
21【347】T(296833)=296833^0.634608482=2971【240818^0.645318354=2971【240818^1.016876344=296833
22【419】T(345889)=345889^0.637342482=3390【351122^0.636592986=3390【351122^0.998824030=345889
23【431】T(402343)=402343^0.639149860=3821【371522^0.643121540=3821【371522^1.006214005=402343
24【461】T(461689)=461689^0.641140989=4282【425042^0.645232413=4282【425042^1.006381472=461689
25【521】T(529981)=529981^0.643142064=4803【542882^0.641970651=4803【542882^0.998178608=529981
26【569】T(605533)=605533^0.645113645=5372【647522^0.641881367=5372【647522^0.994989599=605533
27【599】T(685513)=685513^0.647024831=5971【717602^0.644629594=5971【717602^0.996607182=685513
28【617】T(775741)=775741^0.648376442=6588【761378^0.649271181=6588【761378^1.001379968=775741
29【641】T(866311)=866311^0.649930989=7229【821762^0.652450365=7229【821762^1.003876375=866311
30【659】T(959473)=959473^0.651445262=7888【868562^0.656187506=7888【868562^1.007279573=959473
|
|