|
谢谢陆老师!由陆老师的图可知。
\(∠HBA=∠HCA=\pi/2-A,\)
\(∠HAB=∠HCB=\pi/2-B,\)
\(∠HAC=∠HBC=\pi/2-(\pi-A-B),\)
\(即:a=\sin(A),b=\sin(B),c=\sin(\pi-A-B),\)
\(x=\cos(A),y=\cos(B),z=\cos(\pi-A-B), \)
\(根据三角形面积: abc=yz\sin(A)+zx\sin(B)+xy\sin(A+B)\)
\(两边同除以(xyz): abc/(xyz)=a/x+b/y+c/z\)
\(即: tan(A)tan(B)tan(C)=tan(A)+tan(B)+tan(C)\) |
|