数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 3896|回复: 0

[原创]从咖啡环效应到拓扑绝缘体

[复制链接]
发表于 2012-8-31 18:02 | 显示全部楼层 |阅读模式
[watermark]从咖啡环效应到拓扑绝缘体
---非线性希格斯粒子数学讨论(6)
习强
摘要:中国科学理论体系能将原子论到超弦论这样轻松自如地统一运用,是因为从咖啡环到拓扑量子我国已经解决了什么是“拓扑量子”,并且给出了图像,能为光子、引力子、碲化汞/碲化镉(HgTe/CdTe)拓扑绝缘体以及碳勒烯球笼、碳烯纳米管、石墨烯薄膜等提供极小子流形的量子色动力学的新解读。
关键词:拓扑量子 咖啡环效应 质量 极小流形
一、咖啡环效应与极小子流形绝缘体
“质量”概念被泛化,由来已久。1965年版本的《新华字典》上说:质量,一指产品或工作的优劣程度;二指物理学上物体所含物质之量。1980年版本的《现代汉语小词典》与《新华字典》的解释大致相同,只是对二指物体所含物质之量,加以限制:“物体中所含物质的量,也就是物体惯性的大小”。到1999年版本的《现代汉语词典》,干脆把二指中的“物体所含物质之量”删去,直接说成:“量度物体惯性的大小的物理量。数值上等于物体所受外力和它获得的加速度的比值”。这是牛顿时代的认识。
《现代汉语小词典》和《现代汉语词典》都是中国社会科学院的学者们编辑的。其准确性在今天质量起源于希格斯王国看来,中国社会科学院的编辑不升反降,反映出这部分学者的科学水平,也部分反映了我国作为一个大国的科学水平。实际上“质量”的两层意思在某种意义是统一的:在现代世界上,要真正成为一个科技大国和科技强国,提供教育大多数国民的基础科学知识和本土学者们的前沿科学研究工作的优劣程度,是大国崛起“质量”的一致标志。当然这并非是一个线性关系,它也存在非线性。
1、例如在上世纪90年代以前,国际主流科学家们也认为中微子是没有质量的,因为这是标准模型的需要。然而近年包括我国在内的世界上的中微子振荡实验、观察,都探知到中微子有质量。令人惊讶的是,1938年意大利理论物理学家埃托雷•马约拉纳(Ettore Majorana)早就认为微中子有质量,并提出马约拉纳方程式,当时他仅32岁;但就在当年他在从乘船旅行时离奇失踪。意大利今天虽然被欧债危机困扰,但意大利作为近代世界上的科技大国和强国之一,是一个不争的事实。意大利半岛古有希腊科学文明,近有文艺复兴科技文明。目前我国中科大的隐形传输技术,其中有得益于意大利科学家的传授后青出于蓝而胜于蓝。马约拉纳是意大利科学复兴和崛起的标志的之一。
他生于1906年。21岁时他加入罗马大学物理研究所由费米领导的研究组,1928年他发表的第一篇探讨有关原子光谱的论文,是费米提出的原子结构统计模型即汤马斯-费米模型的早期应用。他除预测了中微子有质量外,还提出过类似路径积分公式的论点,被费曼在十年后的1948年给以发展----任一可跟踪的粒子在任意时刻的状态是无限多路径的总和。1932年他发表的研究在随时间变化的磁场下的原子光谱的论文,开启了原子物理无线电磁波频谱理论的新分支。
1937年马约拉纳写的另一篇探讨相对论性粒子的文章,为了允许带任意动量的粒子,他发展并应用了洛伦兹群的无穷多维表示,打下了有关基本粒子质量的理论基础。但这篇文章近十几年来才受到拓扑绝缘体研究的广大注意,因为自旋轨道耦合引起的能带反转以及材料表面的狄拉克型费米子,根据理论预测,拓扑绝缘体和常规超导体的结合,拓扑绝缘体在p波超导体界面,有可能产生马约拉纳(majorana)费米子,其特性是它与电子、正电子完全不同,它的反粒子就是它本身。
2、基本粒子是构成一切物质实体的基本成分,其中质子、中子和电子构成一切稳定的物质,质子、中子、原子核,最终是原子,都是有质量的。大型强子对撞机如果发现希格斯粒子,这将暗示我们生存在“质量”充满所有时空的背景场世界,“质量”是统一电弱理论到人类的起源等几乎所有宇宙物质理论皇冠上的明珠。中国科学的梦想就是要用“质量”统一世界。虽然汉语词意对“质量”的泛化,使它比物理量的定义更广,但也使这种统一之梦更广阔。中国科学掌握在我们自己手里,路就在我们足下,这也是踏在实实在在的地上之路。而且这个足下、地上,应该类似成为majorana粒子研究热点的半个多世纪后今天的拓扑绝缘体物理学,和不断有中国人人获奖。
如2012年度华人物理学会亚洲成就奖,授予中科院物理研究所研究员方忠、戴希,因为他们预言了铁基超导母体材料中的自旋密度波不稳定性,极大的促进了铁基超导机理研究的进展;他们提出了磁性拓扑绝缘体中的量子化反常霍尔效应;发现了硒化铋(Bi2Se3)、碲化铋(Bi2Te3)等三维强拓扑绝缘体等,带动了世界范围内关于拓扑绝缘体的研究热潮的出现,为自旋-轨道物理和新奇量子效应计算研究做出了杰出贡献。中国清华大学兼任教授张首晟,在2006年提出的实现拓扑绝缘体理论的材料方案,在次年德国维尔茨堡大学的实验中得到证实,成为世界上第一个以实验结果来证实拓扑绝缘体理论的学者。这一成果让他在2010年获欧洲物理学会颁发的欧洲物理奖,2012年获美国物理学会颁发的凝聚态物理最高奖奥利弗•巴克利奖,2012年8月8日获得本年度国际理论物理学领域最高奖的狄拉克奖等国际物理学界的三大顶级奖项。
那么什么是拓扑绝缘体?它与“质量王国”到底有些什么联系?
目前很多人喜欢奢谈“科学精神”和“科学历程”,其实“科学精神”与“科学历程”是和“质量”紧密相联的。这个“质量”正是1965年版本的《新华字典》上解说的那两重意思都包括:“产品或工作”对应“人或具象”;“物理物质之量”对应“信息或性质抽象”。这里信息与人或信息与粒子,类似质量与人。按唯物、辩证和一分为二,科学推促进步,也能阻挡进步,这就是“质量与人”造成的区别。因为联系拓扑绝缘体的“拓扑”,强调大国的科技复兴、崛起、创新,如果国民教育让现代的很多读书人,连“球面”和“环面”不是同一个拓扑类似都不知道,学者之间还有“球面”和“环面”之争,那么奢谈“科学精神”和“科学历程”,不排除质量有空谈和在“自毙”。
1)从理论上说,目前拓扑绝缘体的基本性质,是由“量子力学”和“相对论”共同作用的结果,弦图就如同高速公路上运动的汽车一样,电子运动规律性的自旋轨道耦合作用,如正向与反向行驶的汽车分别走的是不同的道,互不干扰,不会相互碰撞,因此能耗很低。所以拓扑绝缘体的这种弦图也对理解凝聚态物质基本物理有着重要意义,而且由于它所具有的这类平行、正与反合一的弦图特性,也许让专家对制造未来新型的计算机芯片等元器件充满了期待,并希望由此能引发未来电子技术的新一轮革命。
2)从产品上说,目前拓扑绝缘体是一种新的量子物态。与传统的“金属”和“绝缘体”不同,这是一种内部绝缘,界面允许电荷移动的材料。例如传统的固体绝缘体材料,在费米能级处存在着有限大小的能隙,因而没有自由载流子;金属材料在费米能级处只存在着有限的电子态密度,而拥有自由载流子。但拓扑绝缘体完全是由材料的体电子态的拓扑结构所决定,体电子态是有能隙的绝缘体,而其表面则是无能隙的金属态,是由对称性所决定,与表面的具体结构无关,所以它的存在非常稳定,基本不受到杂质与无序的影响。即在拓扑绝缘体的费米能级,位于导带和价带之间,存在着能隙,然而在该类材料的表面则总是存在着穿越能隙的狄拉克型的电子态。在表面存在的这些特殊的量子态,是位于块体能带结构的带隙之中,从而允许导电。这可以用类似拓扑学中的亏格的整数表征,是拓扑有序的一个特例。亏格说到底,用弦图解释就是“圈比点更基本”----类似同样质量、品牌的拓扑绝缘体,也许碳烯薄膜、网笼比实心的性能好。
3、霍尔效应是当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。这一现象是美国物理学家霍尔在1879年发现的,属于一种磁电效应,即霍尔效应的产生是由于在磁场中运动的电子会感受到洛伦兹力的影响。由于霍尔效应的大小直接与样品中的载流子浓度相关,故在凝聚态物理领域获得了广泛的应用,成为金属和半导体物理中一个重要的研究手段。
1)反常霍尔效应是在霍尔效应以后,发现电流和磁矩之间的自旋轨道耦合相互作用也可以导致的霍尔效应。这是霍尔1880年在一个具有铁磁性的金属平板中发现,即使是在没有外加磁场的情况下(或弱外场),也可以观测到霍尔效应而被称之为反常霍尔效应。反常霍尔效应与正常霍尔效应的差别是,因为在没有外磁场的情况下不存在着外场对电子的轨道效应,反常霍尔效应的出现直接与材料中的自旋-轨道耦合及电子结构的贝里(Berry)相位有关。在具有自旋-轨道耦合并破坏时间反演对称性的情况下,材料的特殊电子结构会导致动量空间中非零贝里相位的出现,而该贝里相位的存在将会改变电子的运动方程,从而导致反常霍尔效应的出现。
2)量子霍尔效应是霍尔效应的量子对应。二维电子气在强磁场中会形成能级分离的朗道能级,当温度足够低时就能观察到量子化的霍尔电导,这称为量子霍尔效应。在量子霍尔效应中,因为没有散射,电子可以在样品的边界沿一个方向无耗散地流动。它是一种全新的量子物态---拓扑有序态,磁场并不是霍尔效应的必要条件。在量子霍尔效应中不存在局域的序参量,对该物态的描述需要引入拓扑不变量的概念。对于量子霍尔效应而言,该拓扑不变量就是整数的陈数(Chern-number)。
3)量子反常霍尔效应是在不需要外加磁场的情况下,就能够观察到的量子霍尔效应,称为量子反常霍尔效应。量子反常霍尔效应与在低温强磁场下的二维磁性拓扑绝缘体中观察到量子霍尔效应的差别是,后者的出现需要借助于外加的强磁场,或者说需要有朗道能级的出现。而量子反常霍尔效应材料量子阱中无需外加磁场,也无需相应的朗道能级,就可能存在着量子化的反常霍尔效应,其边缘态可被看成是一根“理想导线”。
4、以霍尔效应为基础的拓扑绝缘体理想导线量子态,存在允许内部自由载流子穿越能隙到界面移动,其剖面图类似咖啡环效应。然而咖啡环效应是与霍尔效应独立的,它类似在运动中会遇到更多阻力的希格斯场产生质量一样的机制。
1)在这两者独立的效应之外,是第三种。它是这两种效应的结合,能为光子、引力子、碲化汞/碲化镉(HgTe/CdTe)拓扑绝缘体以及碳勒烯球笼、碳烯纳米管、石墨烯薄膜等提供极小子流形的量子色动力学的新解读。
那什么叫咖啡环效应?它与希格斯场和霍尔效应有什么区别?
所谓咖啡环效应,是人们早已看到的一种现象:类似滴落在桌面或是纸张上的咖啡溶液,当液滴蒸发时,有些不会从圆周向内一点一点收缩,而会直接变平;这个变平的动作将促使溶液内的所有颗粒都悬浮起来,最终留在液滴边缘,到溶液完全蒸发时,大多数颗粒都抵达了液滴的边缘,并沉积在表面上,从而形成了一个深色的圆环。
2)2011年美国宾夕法尼亚大学物质结构研究实验室主任阿琼•亚德以及博士研究生彼得•雅克和马修•洛尔等发表的研究说明,问题主要聚焦在悬浮的球形颗粒形状上。为实现均匀沉积固体颗粒层提供新的途径,他们从破坏这种咖啡环效应入手,改变溶液中的颗粒形状,竭尽全力寻找能在蒸发后生成均匀固体颗粒层的方法。而这只需简单改变悬浮颗粒的形状,就能去除这种效应。因为不同的粒形能够改变空气和液体交界面上的薄膜的性质,这对蒸发过程可造成巨大影响。咖啡环效应提供的是普适对称性作用,它揭示出了自发对称破缺性:即一滴咖啡蒸发后,会在液滴的边缘形成一个比中间区域颜色深得多的暗环这种不均匀的沉积现象。这与众多需要固体颗粒均匀沉积的应用都相关,如喷墨打印、光子元件组装以及脱氧核糖核酸(DNA)芯片制造等许多溶有固体小颗粒物质的溶液,在液体蒸发后也都会涉及类似特别现象。
宾夕法尼亚大学在实验中,使用了大小一致的塑料颗粒;这些颗粒最初是球形的,但可以拉伸至离心率各异的椭圆颗粒。球形颗粒很容易从界面中分离出来,它们能轻易越过另一个同类颗粒,因为这种颗粒基本上不会改变空气和液体的交界面。而椭圆颗粒则能引起交界面的起伏波动,并可由此引发椭圆颗粒之间强烈的吸引作用,抵消液滴蒸发时将球状颗粒向液滴边缘“驱赶”的动力。因此椭圆颗粒更容易被“卡住”。而“卡住”的颗粒能在蒸发过程中,继续沿液滴所在的表面流动,它们越来越多地阻碍了同类颗粒,造成了粒子“大塞车”,从而最终均匀覆盖在液滴的表面。实验数据表明,当球形颗粒的拉伸比达到20%时,颗粒就会一致地沉积在物体表面。
他们在完成关于悬浮颗粒形状的实验后,又向液滴中添加了一种表面活性剂,以证明发生在溶液表面的相互作用就是“咖啡环效应”的幕后推手。他们同样采用了球形颗粒和椭圆颗粒混合在一起的溶液。在含有表面活性剂的液滴中,椭圆颗粒的“咖啡环效应”可以恢复,而“设计”出的球状颗粒和椭圆颗粒的混合物亦能均匀沉积。这里颗粒形状可理解在液滴变干的过程中所起的作用,但通过改变悬浮颗粒形状去除“咖啡环效应”的效果还不很稳定。
3)我们在探寻解决物质族质量谱公式的道路上,发现咖啡环效应也适用于希格斯机制的孤子链理解。例如类比豆浆变干后,不会出现咖啡环效应,这是为什么呢?因为咖啡环的形成是需要一定条件的:咖啡溶液里的咖啡颗粒,是干加工,容易研磨趋圆;而豆浆的颗粒相比是带条形,是因多为湿加工,在浓度比较高时,蒸干后没有明显的环状。但沉积后的图案还是有厚度不均匀的现象,边缘处的厚度相比要厚一点。另外咖啡环的形成和液滴下基板的导热性能也有一定的关系,如玻璃和木材就有一点区别。
5、量子粒子王国,即使用电子显微镜观察,也难像宏观物体那样看清楚它们的结构和相互作用,况且能使用类似电子显微镜条件的人也很少,所以用原子、分子层次以上比较宏观的观察作模具、模型,来说明量子粒子王国里的结构、现象、机制,成为必由之路。咖啡环效应不很复杂,一般人很容易懂,因此我们把它作为模具来导引说明量子粒子王国,也许比霍尔效应更直观,但问题因为它是模具、模型,难使人相信。
1)例如光子、引力子、碲化汞/碲化镉(HgTe/CdTe)拓扑绝缘体以及碳勒烯球笼、碳烯纳米管、石墨烯薄膜等里的极小子流形机制,能用咖啡环效应直观解读吗?因为这是包括有量子色动力学对其结构、性质的影响,而霍尔效应仅是一种磁电效应。但是磁电效应却是用物理实验现象直接来说明的,它们本身不再需要什么模具、模型,成为研究量子粒子王国的标杆方法。但导体中类似洛伦兹力,电子态能隙、能级、轨道、贝里相位等解读,并不是不要量子图像的模具、模型就能让人懂。
其实电磁效应类型的霍尔效应,它在凝聚态表面间平行、正反两者的移动现象,其模具联系卡西米尔平板效应,也有点类似卡西米尔力的机械原理。
2)所以作为的模具的希格斯场解读,我们说它是和咖啡环效应作为的模具,是属于同一级的。例如说,希格斯场是一种包罗万象的实体,所有粒子都从中通过。有些粒子,如光子,可以不受阻碍地从中通过,它们是无质量的。而其他一些粒子则更像被困糖浆中的蝇子一样必须用力才能通过。这个“希格斯场”与各种粒子相互作用,其活动有强有弱,互动强烈的粒子,在运动中会遇到更多的阻力,显得更重。从经验上说,物体有多重,取决于它位于何处。例如,在陆地上沉重的物体,在水中就会轻一些。同样,如果你在糖浆中推动一个汤匙,感觉一定比在空气中移动它更费劲一些。所以一切物质的质量都由“希格斯场”的存在而决定,理论上希格斯粒子的质量约为质子质量的100倍,是希格斯场的最基本单位。那么希格斯粒子的模型还可以像些什么呢?
3)希格斯粒子为无向量的玻色子,在巡游中所经过的场没有什么优先方向,跟磁场的情况不一样。相对论讲,没有任何信号可以比光跑得更快,相对论与量子力学结合,场的力量实际上是各种粒子在物体间的传播。粒子传输力量的方式有点像“接球游戏”:如果我丢一球,你抓住了它,我会因投掷行为的后推力向后退几步,你也会因接球的动作向后退几步。因此,如果我们双方都有所行动,那么我们就会互相排斥。即如果存在有一个希格斯场,那么也一定存在有一种与这个场相关的粒子,这种粒子就是希格斯粒子。这类似萨斯坎德在《黑洞战争》书中以“持球跑进”类比全息原理,使质量像人与信息、人与思想,反过来信息、思想也像球,可以量子化。人有各种人种,人生下来不会有多少思想,但人是存在于社会、自然界,不带人的思想,也会带动物的思想。
[/watermark]
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2026-1-1 05:06 , Processed in 0.111058 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表