蛮好玩的题目,具体值不需要这么多,譬如:
(2),K(1)+K(2)=N的解组数,限制条件未知数取数不能取 2 的倍数,
具体值需要2个,其中a(1)=0,a(2)=1,
(3),K(1)+K(2)+K(3)=N的解组数,限制条件未知数取数不能取 3 的倍数,
具体值需要4个,其中a(1)=a(2)=0,a(3)=1,a(4)=3,
(4),K(1)+K(2)+K(3)+K(4)=N的解组数,限制条件未知数取数不能取 4 的倍数,
具体值需要8个,其中a(1)=a(2)=a(3)=0,a(4)=1,a(5)=4,
(5),K(1)+K(2)+K(3)+K(4)+K(5)=N的解组数,限制条件未知数取数不能取 5 的倍数,
具体值需要12个,其中a(1)=a(2)=a(3)=a(4)=0,a(5)=1,a(6)=5,
(6),K(1)+K(2)+K(3)+K(4)+K(5)+K(6)=N的解组数,限制条件未知数取数不能取 6 的倍数,
具体值需要18个,其中a(1)=a(2)=a(3)=a(4)=a(5)=0,a(6)=1,a(7)=6,
(7),K(1)+K(2)+K(3)+K(4)+K(5)+K(6)+K(7)=N的解组数,限制条件未知数取数不能取 7 的倍数,
具体值需要24个,其中a(1)=a(2)=a(3)=a(4)=a(5)=a(6)=0,a(7)=1,a(8)=7,
(8),K(1)+K(2)+K(3)+K(4)+K(5)+K(6)+K(7)+K(8)=N的解组数,限制条件未知数取数不能取 8 的倍数,
具体值需要32个,其中a(1)=a(2)=a(3)=a(4)=a(5)=a(6)=a(7)=0,a(8)=1,a(9)=8,
(9),K(1)+K(2)+K(3)+K(4)+K(5)+K(6)+K(7)+K(8)+K(9)=N的解组数,限制条件未知数取数不能取 9 的倍数,
具体值需要40个,其中a(1)=a(2)=a(3)=a(4)=a(5)=a(6)=a(7)=a(8)=0,a(9)=1,a(10)=9,
通项公式应该类似下面。
Table[CoefficientList[Series[(Sum(k=1)^N Abs[MoebiusMu[k]](x^k))^a, {x, 0, N}], x], {a, 1, 9}]
{0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1,1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1,0, 1, 1, 1, 0,1, 1},
{0, 0, 1, 2, 3, 2, 3, 4, 6, 4, 3, 4, 7, 6, 5, 6, 10, 8, 8, 6, 11,8, 9, 8, 14, 10, 9, 10, 13, 10, 9, 10, 16, 12, 13, 12,},
{0, 0, 0, 1, 3, 6, 7, 9, 12, 19, 21,21, 21, 30, 36, 37,36, 48, 58, 63, 57,70, 78, 87, 78, 96, 105,114, 105,123},
{0, 0, 0, 0, 1, 4, 10, 16, 23, 32, 50, 68, 83, 92, 116, 148, 178, 192, 224,276, 335,360, 400, 460, 547, 580,},
{0, 0, 0, 0, 0, 1, 5, 15, 30, 50, 76, 120, 180, 250, 315, 401, 520, 670, 805, 955, 1160, 1445, 1715, 1980,},
{0, 0, 0, 0, 0, 0, 1, 6, 21, 50,96, 162, 267, 426, 645, 902, 1218, 1632,2187, 2826, 3543, 4402,5547, 6906},
{0, 0, 0, 0, 0, 0, 0, 1, 7, 28, 77, 168, 315, 553, 932, 1505, 2282, 3297, 4634, 6447, 8771, 11607, 15029,},
{0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 36, 112, 274, 568, 1072, 1912, 3263, 5280, 8128,12048, 17474, 24824, 34428},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 45, 156, 423, 963, 1959, 3708, 6669, 11410, 18594, 29052, 44046, 65196,}, |