数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge\underset{m\to\infty}{\lim}(m+j)\textbf{ 的春氏定义为何?}\)

[复制链接]
发表于 2025-3-2 23:10 | 显示全部楼层
elim 发表于 2025-3-2 15:44
孬种不等式\(v>v+1\)的依据是“自然数 v”
大于任意自然数(其中 \(v=\displaystyle\lim_{n\to\infty}n\) ...

放你娘的臭狗屁!【\(v>v+1\)的依据是“自然数v”大于任意自然数】,那么【“自然数v”大于任意自然数】的依据又是什么呢?所以elim的这段狗屁言论的实质是:因为\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数!像这种循环论证的错误,学过平面几何的初中生都不会犯!elim你还好意思在这里显摆!真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-2 23:10 | 显示全部楼层
elim 发表于 2025-3-2 21:48
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...

elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-3 03:23 | 显示全部楼层

       放你娘的臭狗屁!你根本就不知道什么是无穷?什么是超穷?你对自然数的认知还不及小学四年级的学生。一味胡搅蛮缠,打滚撒泼,真不要脸!
       elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?
       你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!
       elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-3 08:10 | 显示全部楼层
elim 发表于 2025-3-3 06:03
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...


       放你娘的臭狗屁!你根本就不知道什么是无穷?什么是超穷?你对自然数的认知还不及小学四年级的学生。一味胡搅蛮缠,打滚撒泼,真不要脸!
       elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?
       你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!
       elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-3 10:48 | 显示全部楼层

       放你娘的臭狗屁!你根本就不知道什么是无穷?什么是超穷?你对自然数的认知还不及小学四年级的学生。一味胡搅蛮缠,打滚撒泼,真不要脸!
       elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对每个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?
       你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!
       elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-3 10:57 | 显示全部楼层
elim 发表于 2025-3-3 10:54
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...


       放你娘的臭狗屁!你根本就不知道什么是无穷?什么是超穷?你对自然数的认知还不及小学四年级的学生。一味胡搅蛮缠,打滚撒泼,真不要脸!
       elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对每个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?
       你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!
       elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-3 12:39 | 显示全部楼层
elim 发表于 2025-3-3 11:58
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...


       放你娘的臭狗屁!你根本就不知道什么是无穷?什么是超穷?你对自然数的认知还不及小学四年级的学生。一味胡搅蛮缠,打滚撒泼,真不要脸!
       elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对每个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?
       你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)是自然数!
       elim你就是这样精通数学、精通集合的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-3 19:33 | 显示全部楼层
elim 发表于 2025-3-3 18:31
对任意\(m\in\mathbb{N},\)当\(n\to\infty\)时\(n>m\)故\(v=\displaystyle\lim_{n\to\infty}n\)
大于任 ...


       放你娘的臭狗屁!你根本就不知道什么是无穷?什么是超穷?你对自然数的认知还不及小学四年级的学生。一味胡搅蛮缠,打滚撒泼,真不要脸!
       elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对每个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?
       你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)不是自然数!
       elim你就是这样精通数学、精通集合论的吗?真不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-3 21:38 | 显示全部楼层

       放你娘的臭狗屁!你根本就不知道什么是无穷?什么是超穷?你对自然数的认知还不及小学四年级的学生。一味胡搅蛮缠,打滚撒泼,真不要脸!
       elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)自然,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对每个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?
       你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)不是自然数!
       elim,数学中没有戈陪尔效应,谎言千遍,仍是谎言。你你死乞百赖,耍横撒泼,胜之不武。玩这种宿帖发了又删,删了又发的把戏,你太小看数学论坛的网友了吧!真是流氓成性,死不要脸!
回复 支持 反对

使用道具 举报

发表于 2025-3-5 20:38 | 显示全部楼层

       放你娘的臭狗屁!你根本就不知道什么是无穷?什么是超穷?你对自然数的认知还不及小学四年级的学生。一味胡搅蛮缠,打滚撒泼,真不要脸!
       elim认为【对任意m∈\(\mathbb{N}\),当n>m,故\(v=\displaystyle\lim_{n\to\infty} n\)大于任意自然数,因而\(v\)不是自然数。】elim这段论述的实质是:因为\(v\)不是自然数,所以\(v\)不是自然数。elim的【否则\(v+1\)是自然数。从而大于任意自然数的\(v\)大于自然数\(v+1\)】。elim,\(v\)是自然数,\(v+1\)是\(v\)的后继,所以【大于任意自然数\(v\)的任意自然数】不小于\(v+1\)(即若\(j>v,则j≥v+1\),皮亚诺公理第二条所说的对再个确定(具体写出或逻辑认定)的自然数\(a\),都有唯一确定的后继\(a'=a+1\),试问elim,\(v+1\)是自然数为什么会导致【\(v\)与皮亚诺公理不合】?究竟与皮亚诺公理哪一条不合?
       你【再次证明\(\displaystyle\lim_{n\to\infty} n\)不是自然数】的实质仍为:因为\(\displaystyle\lim_{n\to\infty} n\)不是自然数,所以\(\displaystyle\lim_{n\to\infty} n\)不是自然数!
       elim,数学中没有戈陪尔效应,谎言千遍仍是谎言!elim,同一篇帖子发了删,删了又发,究竟意欲何为?若妄想以死缠烂打,循环论证的流氓行为横行论坛,你就不觉得你无聊无耻吗?真不要脸!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-10 03:31 , Processed in 0.099198 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表