数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\huge\color{red}{^\star\;\textbf{陶哲轩: 无穷}\lim n\not\in\textbf{N}}\)

[复制链接]
发表于 2025-8-11 17:05 | 显示全部楼层

       【命题】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 1 反对 0

使用道具 举报

发表于 2025-8-12 03:31 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页),ω表示第一个超穷数。Cantor非负整数集为
\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\) . 其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都有\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)!所以elim的一切胡搅蛮缠都是反现行数学的铁证。elim至今仍坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),实在不可救药!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 09:39 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页),ω表示第一个超穷数。Cantor非负整数集为
\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\) . 其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 10:32 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页),ω表示第一个超穷数。Cantor非负整数集为
\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\) . 其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 10:38 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页),ω表示第一个超穷数。Cantor非负整数集为
\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\) . 其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 10:45 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页),ω表示第一个超穷数。Cantor非负整数集为
\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\) . 其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 12:56 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页,第19—20行),ω表示第一个超穷数。Cantor非负整数集为\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)  .  其中,\(\Omega_j=\{j\cdot\omega,\)\(j\cdot\omega\)\(+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 13:38 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页,第19—20行),ω表示第一个超穷数。Cantor非负整数集为\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)  .  其中,\(\Omega_j=\{j\cdot\omega,\)\(j\cdot\omega\)\(+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 13:42 | 显示全部楼层

        在Cantor非负整数理论中〖数\(\nu(=\displaystyle\lim_{n \to \infty}n)\)既表示把一个个单位放上去的确切记数,又表示它们所汇集成的整体〗(参见康托尔著《超穷数理论基础》P42页,第19—20行),ω表示第一个超穷数。Cantor非负整数集为\(\Omega=\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)  .  其中,\(\Omega_j=\{j\cdot\omega,\)\(j\cdot\omega\)\(+1,j\cdot\omega\)\(+2…,j\cdot\omega+\nu\}\) . 特别的当j=0时,\(\Omega_0=\{0,\)\(1,2,…,\nu\}=\mathbb{N}\)(参见康托尔《超穷数理论基础》P42、P43、P44、P75页) . 所以无论民科领袖有多么抵触,都无法改变\(\color{red}{\displaystyle\lim_{n \to \infty}n\in\mathbb{N}}\)这一事实!elim你还是给自己留点颜面,你一再坚持\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\),只能使自己身败名裂,更加令人不齿!
回复 支持 反对

使用道具 举报

发表于 2025-8-12 13:56 | 显示全部楼层

        陶哲轩先生在他的《陶哲轩实分析》第三版P19页2—4行也讲了〖存在其它数系,使得“无穷大”是该数系中的元素。例如基数系、序数系以及p进数系〗。
        由于集合论是在基数系和序数系下展开讨论的,集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\}\)的极限集是在十(p=10)进数系下讨论的。所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)。同时我们根据数的三歧性原理证明了皮亚诺公理第二条对\(\displaystyle\lim_{n \to \infty}n\)成立(参见《\(\displaystyle\lim_{n \to \infty}n\)不是\(\mathbb{N}\)中最大数》的证明)。因此,elim的【\(\displaystyle\lim_{n \to \infty}n=\)\(sup\mathbb{N}\)\(\notin\mathbb{N}\)】的臆想不成立!所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)再次得到严谨证明。
        对于elim这样的民科领袖,本帖他是不会看的。他宁肯削足适靴,他也会坚持他的胡说八道。不过分享本帖,也为关注\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)问题的网友提供参考!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-19 22:09 , Processed in 0.092992 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表