|

楼主 |
发表于 2015-11-15 10:08
|
显示全部楼层
本帖最后由 愚工688 于 2015-11-15 02:10 编辑
再发其它500亿以上一些连续偶数的素对数量的计算值与相对误差情况:
G(50000000012) = 65732162 ,Sp( 50000000012 *)≈ 65726186.5 ,Δ≈-0.000090908 ;
G(50000000014) = 61272843 ,Sp( 50000000014 *)≈ 61271185 ,Δ≈-0.000027059 ;
G(50000000016) = 118510495 ,Sp( 50000000016 *)≈ 118516403.8 ,Δ≈ 0.000049859 ;
G(50000000018) = 59292853 ,Sp( 50000000018 *)≈ 59290024.9 ,Δ≈-0.000047697 ;
G(50000000020) = 79010010 ,Sp( 50000000020 *)≈ 79004203.9 ,Δ≈-0.000074386 ;
G(50000000022) = 142186907 ,Sp( 50000000022 *)≈ 142207567.1 ,Δ≈ 0.000145302 ;
G(50000000024) = 70921585 ,Sp( 50000000024 *)≈ 70919098.4 ,Δ≈-0.000035061 ;
G(50000000026) = 59251942 ,Sp( 50000000026 *)≈ 59253153 ,Δ≈ 0.000020438 ;
G(50000000028) = 137457486 ,Sp( 50000000028 *)≈ 137468511.3 ,Δ≈ 0.000080209 ;
G(50000000030) = 79532797 ,Sp( 50000000030 *)≈ 79541647.5 ,Δ≈ 0.000111281 ;
G(50000000032) = 59282642 ,Sp( 50000000032 *)≈ 59293820.9 ,Δ≈ 0.000188570 ;
G(50000000034) = 118500487 ,Sp( 50000000034 *)≈ 118506305.9 ,Δ≈ 0.000049104 ;
G(50000000036) = 74548291 ,Sp( 50000000036 *)≈ 74548119.7 ,Δ≈-0.000002298 ;
G(50000000038) = 59294346 ,Sp( 50000000038 *)≈ 59296371.9 ,Δ≈ 0.000034167 ;
G(50000000040) = 159496823 ,Sp( 50000000040 *)≈ 159513249.9 ,Δ≈ 0.000102990 ;
G(50000000042) = 59239605 ,Sp( 50000000042 *)≈ 59253153 ,Δ≈ 0.000228698 ;
G(50000000044) = 59280620 ,Sp( 50000000044 *)≈ 59284924.1 ,Δ≈ 0.000072606 ;
G(50000000046) = 119778384 ,Sp( 50000000046 *)≈ 119786671 ,Δ≈ 0.000069186 ;
G(50000000048) = 59688934 ,Sp( 50000000048 *)≈ 59692065.2 ,Δ≈ 0.000052459 ;
G(50000000050) = 121667131 ,Sp( 50000000050 *)≈ 121677238 ,Δ≈ 0.000083071 ;
G(50000000052) = 122621259 ,Sp( 50000000052 *)≈ 122629183.7 ,Δ≈ 0.000064627 ;
G(50000000054) = 59373981 ,Sp( 50000000054 *)≈ 59374325.1 ,Δ≈ 0.000005794 ;
G(50000000056) = 59260649 ,Sp( 50000000056 *)≈ 59254702.1 ,Δ≈-0.000353272 ;
G(50000000058) = 132404100 ,Sp( 50000000058 *)≈ 132426094.3 ,Δ≈ 0.000166115 ;
G(50000000060) = 79011955 ,Sp( 50000000060 *)≈ 79020225.9 ,Δ≈ 0.000104679 ;
G(50000000062) = 59432600 ,Sp( 50000000062 *)≈ 59433253.8 ,Δ≈ 0.000011001 ;
G(50000000064) = 142247988 ,Sp( 50000000064 *)≈ 142254259.6 ,Δ≈ 0.000044089 ;
G(50000000066) = 59988868 ,Sp( 50000000066 *)≈ 59996858.3 ,Δ≈ 0.000133196 ;
G(50000000068) = 61289964 ,Sp( 50000000068 *)≈ 61296365.2 ,Δ≈ 0.000104441 ;
G(50000000070) = 158331607 ,Sp( 50000000070 *)≈ 158352652.9 ,Δ≈ 0.000132923 ;
G(50000000072) = 65855484 ,Sp( 50000000072 *)≈ 65861278.1 ,Δ≈ 0.000087981 ;
G(50000000074) = 59245734 ,Sp( 50000000074 *)≈ 59254534.2 ,Δ≈ 0.000148537 ;
G(50000000076) = 130304424 ,Sp( 50000000076 *)≈ 130313843.4 ,Δ≈ 0.000072288 ;
G(50000000078) = 71097559 ,Sp( 50000000078 *)≈ 71103783.6 ,Δ≈ 0.000087550 ;
G(50000000080) = 79330312 ,Sp( 50000000080 *)≈ 79334765.6 ,Δ≈ 0.000056140 ;
G(50000000082) = 119703825 ,Sp( 50000000082 *)≈ 119716614.5 ,Δ≈ 0.000106843 ;
G(50000000084) = 61264210 ,Sp( 50000000084 *)≈ 61265894.8 ,Δ≈ 0.000027501 ;
G(50000000086) = 62429458 ,Sp( 50000000086 *)≈ 62430870.1 ,Δ≈ 0.000022618 ;
G(50000000088) = 125475666 ,Sp( 50000000088 *)≈ 125477265.3 ,Δ≈ 0.000012746 ;
G(50000000090) = 79771709 ,Sp( 50000000090 *)≈ 79771132.6 ,Δ≈-0.000007226 ;
G(50000000092) = 75835338 ,Sp( 50000000092 *)≈ 75844035.9 ,Δ≈ 0.000114695 ;
G(50000000094) = 132357155 ,Sp( 50000000094 *)≈ 132363064.4 ,Δ≈ 0.000044647 ;
G(50000000096) = 59247527 ,Sp( 50000000096 *)≈ 59253153 ,Δ≈ 0.000094958 ;
G(50000000098) = 60944402 ,Sp( 50000000098 *)≈ 60946100.3 ,Δ≈ 0.000027866 ;
G(50000000100) = 162055494 ,Sp( 50000000100 *)≈ 162068382.2 ,Δ≈ 0.000079530 ; |
|