数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: 歌德三十年

我对猜想命题的创新描述与证明

[复制链接]
发表于 2011-5-10 16:59 | 显示全部楼层

我对猜想命题的创新描述与证明

您的假设推论是不是归纳假设(即假设当n=k时结论成立作为前提)的推论,若是的话
k=2ij+ij=m+3q能剔除嘛?剔除了还是数学归纳法吗?
您如果觉得我的质疑不对,或者是,我还没有悟到您的高度,就当我没有提好了,即使是表决,也有保留意见的权利,何况您请我们质疑!
 楼主| 发表于 2011-5-12 10:58 | 显示全部楼层

我对猜想命题的创新描述与证明

回LLZ2008:您好。请看以下我原文摘抄:
假设推论二: 2ij+i+j≠m+3q q∈N+{1+2(m+3q)}表大于9的素数
证 :
由假设推论一知{3+2(k-m)}={3+2((2ij+i+j)-m)}表大于3的素数,而{3+((m+3q)-m)}={3(1+2q)}表奇合数
故2ij+i+j≠m+3q,而{1+2(2ij+i+j)}={(2i+1)(2j+1)}表不小于9的奇合数,而由于2ij+i+j≠m+3q
∴{1+2(m+3q}不能表不小于9的奇合数 故{1+2(m+3q}只能表大于9的素数
证毕.
我上述原文就已经证明了“k=2ij+i+j时2ij+i+j≠m+3q即k=2ij+i+j≠m+3q”怎么可能还会出现“k=2ij+i+j=m+3q”的分流情况?
“您的第二次分流存在k=2ij+i+j=m+3q  q∈N+.这一流,不是我要加上,而是您剔除了“k=2ij+i+j=m+3q q∈N+”,不剔除这种情况,您的证明是不是就是错的?
我一般不随便质疑。”请问,我的原文存在您所质疑的那一流的文字吗?那所谓的一流您的帖子说的再明白不过了---“不是我(LLZ2008)要加上去的,而是您(马氏)剔除了”。我怎么可能剔除根本就不存在的文字呢?---这是什么道理?请不要强加于人!
请问,您有什么理论根据说“您的第二次分流存在k=2ij+i+j=m+3q  q∈N+.这一流”?是您自以为是的杜撰吧!?还是给我扣您的spz?
“我(LLZ2008)一般不随便质疑”---我(马氏)一般没这么耐心给您的质疑作答!
请您静下来“悟”一下,假如存在“k=2ij+ij=m+3q这一流”,是不是会导致出现“{3+2(k-m)}素数={3+2((2ij+i+j)-m)}素数={3+2((m+3q)-m)}={3(1+2q)}奇合数”的矛盾?

请回答。
发表于 2011-5-12 11:43 | 显示全部楼层

我对猜想命题的创新描述与证明

下面引用由歌德三十年2011/05/12 10:58am 发表的内容: 回LLZ2008:您好。请看以下我原文摘抄:
假设推论二: 2ij+i+j≠m+3q q∈N+{1+2(m+3q)}表大于9的素数
证 :
由假设推论一知{3+2(k-m)}={3+2((2ij+i+j)-m)}表大于3的素数,而{3+((m+3q)-m) ...
您说:“请您静下来“悟”一下,假如存在“k=2ij+ij=m+3q这一流”,是不是会导致出现“{3+2(k-m)}素数={3+2((2ij+i+j)-m)}素数={3+2((m+3q)-m)}={3(1+2q)}奇合数”的矛盾? 请回答。” 您是用的数学归纳法,还是反证法。或者是两种方法的杂合体。如果是杂合体,那里到哪里是数学归纳法,那里是反证法。 您的假设推论是不是归纳假设(即假设当n=k时结论成立作为前提)的推论,若是的话 k=2ij+ij=m+3q能剔除嘛?剔除了还是数学归纳法吗?
 楼主| 发表于 2011-5-12 16:13 | 显示全部楼层

我对猜想命题的创新描述与证明

回LLZ2008:您好。请看以下我原文摘抄:
假设推论二: 2ij+i+j≠m+3q q∈N+{1+2(m+3q)}表大于9的素数
证 :
由假设推论一知{3+2(k-m)}={3+2((2ij+i+j)-m)}表大于3的素数,而{3+((m+3q)-m)}={3(1+2q)}表奇合数
故2ij+i+j≠m+3q,而{1+2(2ij+i+j)}={(2i+1)(2j+1)}表不小于9的奇合数,而由于2ij+i+j≠m+3q
∴{1+2(m+3q}不能表不小于9的奇合数 故{1+2(m+3q}只能表大于9的素数
证毕.
我上述原文就已经证明了“k=2ij+i+j时2ij+i+j≠m+3q即k=2ij+i+j≠m+3q”怎么可能还会出现“k=2ij+i+j=m+3q”的分流情况?
“您的第二次分流存在k=2ij+i+j=m+3q  q∈N+.这一流,不是我要加上,而是您剔除了“k=2ij+i+j=m+3q q∈N+”,不剔除这种情况,您的证明是不是就是错的?
我一般不随便质疑。”请问,我的原文存在您所质疑的那一流的文字吗?那所谓的一流您的帖子说的再明白不过了---“不是我(LLZ2008)要加上去的,而是您(马氏)剔除了”。我怎么可能剔除根本就不存在的文字呢?---这是什么道理?请不要强加于人!
请问,您有什么理论根据说“您的第二次分流存在k=2ij+i+j=m+3q  q∈N+.这一流”?是您自以为是的杜撰吧!?还是给我扣您的spz?
“我(LLZ2008)一般不随便质疑”---我(马氏)一般没这么耐心给您的质疑作答!
请您静下来“悟”一下,假如存在“k=2ij+ij=m+3q这一流”,是不是会导致出现“{3+2(k-m)}素数={3+2((2ij+i+j)-m)}素数={3+2((m+3q)-m)}={3(1+2q)}奇合数”的矛盾?
k=2ij+i+j=m+3q是您想当然的分流,我文中本就不存在何以剔除?假如存在“k=2ij+ij=m+3q这一流”,是不是会导致出现“{3+2(k-m)}素数={3+2((2ij+i+j)-m)}素数={3+2((m+3q)-m)}={3(1+2q)}奇合数”的矛盾?
请回答。

 楼主| 发表于 2011-5-14 11:05 | 显示全部楼层

我对猜想命题的创新描述与证明

回LLZ2008:您好。请看以下我原文摘抄:
假设推论二: 2ij+i+j≠m+3q q∈N+{1+2(m+3q)}表大于9的素数
证 :
由假设推论一知{3+2(k-m)}={3+2((2ij+i+j)-m)}表大于3的素数,而{3+((m+3q)-m)}={3(1+2q)}表奇合数
故2ij+i+j≠m+3q,而{1+2(2ij+i+j)}={(2i+1)(2j+1)}表不小于9的奇合数,而由于2ij+i+j≠m+3q
∴{1+2(m+3q}不能表不小于9的奇合数 故{1+2(m+3q}只能表大于9的素数
证毕.
我上述原文就已经证明了“k=2ij+i+j时2ij+i+j≠m+3q即k=2ij+i+j≠m+3q”怎么可能还会出现“k=2ij+i+j=m+3q”的分流情况?
“您的第二次分流存在k=2ij+i+j=m+3q  q∈N+.这一流,不是我要加上,而是您剔除了“k=2ij+i+j=m+3q q∈N+”,不剔除这种情况,您的证明是不是就是错的?
我一般不随便质疑。”请问,我的原文存在您所质疑的那一流的文字吗?那所谓的一流您的帖子说的再明白不过了---“不是我(LLZ2008)要加上去的,而是您(马氏)剔除了”。我怎么可能剔除根本就不存在的文字呢?---这是什么道理?请不要强加于人!
请问,您有什么理论根据说“您的第二次分流存在k=2ij+i+j=m+3q  q∈N+.这一流”?是您自以为是的杜撰吧!?还是给我扣您的spz?
“我(LLZ2008)一般不随便质疑”---我(马氏)一般没这么耐心给您的质疑作答!
请您静下来“悟”一下,假如存在“k=2ij+ij=m+3q这一流”,是不是会导致出现“{3+2(k-m)}素数={3+2((2ij+i+j)-m}素数={3+2((m+3q)-m)}={3(1+2q)}奇合数”的矛盾?


 楼主| 发表于 2011-5-16 16:26 | 显示全部楼层

我对猜想命题的创新描述与证明

各位网友:大家好。
王元结舌瞪眼瞧
“9+9”到“1+2”,无奈哥猜半分毫。
马氏分流归纳法,陈氏还魂瞪眼瞧。
素数定理上帝造,无奈哥猜半分毫。
中华马氏新定理,王元结舌瞪眼瞧。
注:中华马氏新定理---马氏奇合数定理、马氏奇素数定理
 楼主| 发表于 2011-5-17 14:27 | 显示全部楼层

我对猜想命题的创新描述与证明

回48楼123.69.40*先生;下车伊始,就哇啦哇啦发表议论是不是太自以为是了?我的命题已在《哥德巴赫猜想真理性之证明》一文中用前所未见、前所未闻的马氏分流归纳法已将其完满证明。
请冷静点,别太主观臆想啦。对我的文章王元尚且结舌瞪眼瞧,其徒子徒孙也就只有顿足捶胸如丧考媲般的一片哭闹表演了。
沉舟侧畔千帆过,病树前头万木春。这是历史发展的必然。任谁也留不住历史的脚步!!!

 楼主| 发表于 2011-5-18 15:14 | 显示全部楼层

我对猜想命题的创新描述与证明

我对“不小于6的偶数都可表二奇素数之和”的哥猜原命题用最通俗的数理语言描述为:“形如2(n+2)能够找到一个不大于n的正整数m∈{2ij+i+j|i,j∈N+} 使得2(n+2)={1+2m}(素数)+{3+2(n-m)}(素数) 成立.”
其证明请详见本吧《哥德巴赫猜想真理性之证明》一文。
哥猜问题近三百年不得解决,其主要原因是人们把原本朴素简单的命题复杂化了。越搞越复杂以致陷入泥潭。提请初涉者务必注意这一点,千万不要步陈景润氏“1+2”后尘。
正是
“a+b”到“1+2”,无奈哥猜半分毫。马氏分流归纳法,陈氏还魂瞪眼瞧。
圆法筛法殆素数, 无奈哥猜半分毫。中华马氏新命题,王元结舌瞪眼瞧。
沉舟侧畔千帆过,病树前头万木春。朗朗乾坤,日月昭昭。孰是孰非,自在人心。历史会证明一切的。

 楼主| 发表于 2011-5-20 09:20 | 显示全部楼层

我对猜想命题的创新描述与证明

c.ds等蠢猪们:你们懂得什么是马氏分流归纳法吗?马氏分流归纳法岂是如你们那样胡乱分流的。马氏分流归纳法的理论基础是什么?你们懂吗?你们的祖宗王元对我的马法尚且结舌瞪眼瞧(前见所未见,前闻所未闻之法),其徒子徒孙就不要提了,只有靠边稍息哑口细细研究学习的份了。
歪曲、篡改,给我文扣屎盆子的帖子,不值一驳---憋死你们!
 楼主| 发表于 2011-5-22 11:00 | 显示全部楼层

我对猜想命题的创新描述与证明

c.ds根本就不懂马氏分流归纳法,居然将N+分流为k=m与k=m+3q两种情况。马氏分流归纳法是将N+分流为k=m∈CN+{2ij+i+j|i,j∈N+}与k=(2ij+i+j)∈{2ij+i+j|i,j∈N+}两种情况。请大家比较各自两种情况的不同。马氏分流的理论依据是:N+=CN+{2ij+i+j|i,j∈N+}{+}{2ij+i+j|i,j∈N+}。显然c.ds是在自以为是地胡乱分流。他根本就拿不出其分流的理论依据。孰是孰非,孰食孰屎,明眼人自明。历史也会证明一切的。王元及其徒子徒孙瞪眼瞧瞧吧!!!

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-9 08:44 , Processed in 0.091764 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表