|

楼主 |
发表于 2022-7-1 11:27
|
显示全部楼层
本帖最后由 yangchuanju 于 2022-7-11 12:49 编辑
vfbpgyfk点评
以因子多少定素数对个数多或少,并不科学,而是应该能否被6整除为宜。例如:170166=2*3*29*359才四个因子,而170168=2*2*2*89*239五个因子。D(170166)=1863,D(170168)=930,且170166<170168。 发表于 2022-7-1 08:59
——————————————————————————————————
无人按偶数素因子个数估算哥猜数,那老师的理解不正确。
对于特定偶数M,它的哥猜数(素数对个数)与其平方根内的能整除M的所有素因子有关,可称之为“小素因子”;
各个小素因子的共同影响合并成一个波动系数(或称波动因子)∏(p-1)/(p-2),式中的p为偶数M平方根内并能整除M的奇素因子。
若偶数M的所有“小素因子”全是2(包括2^n型和2^n*p^k型偶数),则它们的波动系数等于1;
若偶数M的“小素因子”除2以外还含有3,5,7等,其波动系数就大于1了,它的哥猜数就要乘上这个波动系数了;
3,5,7……对波动系数的影响各不相同:3为2,5为4/3,7为6/5,……;
多个3,5,7……与一个3,5,7……相同,只按一个计算。
重生888@(吴代业)仅考虑小素因子3和5,他的计算精度较差;
那宝吉老师(vfbpgyf)考虑了小素因子3,5,7,11,13对哥猜数的影响,计算精度比吴老师的计算精度高一些;
但那老师并未考虑偶数M的全部“小素因子”对其哥猜数的(波动系数)影响,当偶数M不含大于13的小素因子时,精度是高的;
但偶数M含有大于13的小素因子时,精度要低一些:
17 1.066666667
19 1.058823529
23 1.047619048
29 1.037037037
31 1.034482759
如果那老师不在乎这6.67%、5.88%、4.76%、3.70%、3.45%……,只为简单估算某偶数的大致哥猜数,按您的分类和计算方法无可非议!
|
|