数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\LARGE^7\;\;\;\textbf{康托:}|\mathscr{P}(S)|> |S|\)

[复制链接]
发表于 2025-10-29 10:36 | 显示全部楼层

        elim,在现行数学中\(\infty=\{n|n>N_ε\)\((=[\tfrac{1}{ε}]+1),\)\(N_ε∈N\}\)。所以\(\displaystyle\lim_{n \to \infty}n\)\(\in N\)\((即\displaystyle\lim_{n \to \infty}n\)\(\to\infty)\)!但\(\displaystyle\lim_{n \to \infty}n\)\(\ne\)\(\infty\)!故此陶哲轩没有错,大错而特错的是民科领袖elim无视威尔斯特拉斯对\(\infty\)和趋向\(\infty\)的定义,自出心裁的定义出一套与现行数学根本不相容的歪理,方得到诸如【无穷交就是一种骤变】、【\(\displaystyle\lim_{n \to \infty}n\)\(=Sup\mathbb{N}\)】……等反现行数学的谬论。这种连最基础的数学基本概念,基本方法都要篡改一通的王八蛋,还有什么脸怼春氏可达!?
回复 支持 反对

使用道具 举报

发表于 2025-10-29 14:08 | 显示全部楼层

        elim,在现行数学中\(\infty=\{n|n>N_ε\)\((=[\tfrac{1}{ε}]+1),\)\(N_ε∈N\}\)。所以\(\displaystyle\lim_{n \to \infty}n\)\(\in N\)\((即\displaystyle\lim_{n \to \infty}n\)\(\to\infty)\)!但\(\displaystyle\lim_{n \to \infty}n\)\(\ne\)\(\infty\)!故此陶哲轩没有错,大错而特错的是民科领袖elim无视威尔斯特拉斯对\(\infty\)和趋向\(\infty\)的定义,自出心裁的定义出一套与现行数学根本不相容的歪理,方得到诸如【无穷交就是一种骤变】、【\(\displaystyle\lim_{n \to \infty}n\)\(=Sup\mathbb{N}\)】……等反现行数学的谬论。这种连最基础的数学基本概念,基本方法都要篡改一通的王八蛋,还有什么脸怼春氏可达!?
回复 支持 反对

使用道具 举报

发表于 2025-10-30 21:10 | 显示全部楼层

        elim于2025-10-30 13:38发表新主题《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》该主题的主帖认为【\(\displaystyle\lim_{n \to \infty}n=m\)\(\in\mathbb{N}\),则对n>M=m+1令\(n\to\infty\)得\(\displaystyle\lim_{n \to \infty}n<\)\(m+1=M\le\displaystyle\lim_{n \to \infty}n=m\),\(m+1\le m\)\(\implies m\notin\mathbb{N}\)\(\implies\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)】elim论述之余,一如既往地对春风晚霞发动攻击,【顽瞎目测蕴含顽瞎目测的否定,此乃嗜屎报应.】【滚驴白痴真身被验明,孬贼船漏不打一处来.】
        elim的这个主题及主贴既向我们充分地展示了elim反数学的丑恶嘴脸,也充分暴露了elim嗜屎如命,滚驴白痴的肮脏心理。同时更进一步展示了elim不懂数学论证、不懂自然数、不懂无穷数学白痴的事实。现在我们结合《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》这个主题重点讲讲什么是论证。
所谓证明是指〖从命题的题设出发,根据已知的定义(如自然数的定义)、公理(如皮亚诺公理)、定理(如自然数集是无限集定理),逐步推导出未知(即结论)的逻辑演译过程〗,所以要证明命题【\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)】,我们们必须从〖\(\lim n\in\mathbb{N}\)〗这个\(\color{red}{题设}\)条件出发,根据皮亚诺公理(犹其是皮亚诺公理第二条),去逻辑演译出\(\lim n\notin\mathbb{N}\)这个结论。所以,正确地演译应是〖若\(\lim n\in\mathbb{N}\)\(\implies\lim n+1\in\mathbb{N}\)(理论根据是皮亚诺公理第二条:每一个确定的自然数a,都有一个确定的后继数a'(=a+1),a'(=a+1)也是自然数.〗于是问题就转化成如\(m+1\)是不是自然数的问题。如果\(m+1\)是自然数(即皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)是否成立的问题),
        现在我们证明命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        注意:我们在此\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)的基础上亦可证明\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……是自然数!证明的合理性请参见康托尔《超穷数理论基础》P75页第7—8行.
Elim,由问题的一般(项)通过极限的手段探测无穷,这是数学上常规有效方法,这种方法应用于一切步及极限动算的始终。所以你反对目测,其实质就是反对现行数学行之有效地论证方法。也因为elim反对目测,所以elim才有\(\displaystyle\lim_{n \to \infty}n=Sup\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=Max\mathbb{N}\)、……这样一些荒谬结论。
        elim纯粹数学是通过严谨的证明获得的,而不是靠耍流氓、耍无赖得到的。郑告民科领袖elim数学切忌撒谎,因为数学中没有戈陪尔效应,谎言千遍,仍是谎言!至此谁嗜吃屎,谁的【白痴真身被验明,孬贼船漏不打一处来】你固然不想承认,然网络诸友想必还是心中有数的!

回复 支持 反对

使用道具 举报

发表于 2025-10-31 06:18 | 显示全部楼层

        elim于2025-10-30 13:38发表新主题《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》该主题的主帖认为【\(\displaystyle\lim_{n \to \infty}n=m\)\(\in\mathbb{N}\),则对n>M=m+1令\(n\to\infty\)得\(\displaystyle\lim_{n \to \infty}n<\)\(m+1=M\le\displaystyle\lim_{n \to \infty}n=m\),\(m+1\le m\)\(\implies m\notin\mathbb{N}\)\(\implies\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)】elim论述之余,一如既往地对春风晚霞发动攻击,【顽瞎目测蕴含顽瞎目测的否定,此乃嗜屎报应.】【滚驴白痴真身被验明,孬贼船漏不打一处来.】
        elim的这个主题及主贴既向我们充分地展示了elim反数学的丑恶嘴脸,也充分暴露了elim嗜屎如命,滚驴白痴的肮脏心理。同时更进一步展示了elim不懂数学论证、不懂自然数、不懂无穷数学白痴的事实。现在我们结合《\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)》这个主题重点讲讲什么是论证。
        所谓证明是指〖从命题的题设出发,根据已知的定义(如自然数的定义)、公理(如皮亚诺公理)、定理(如自然数集是无限集定理),逐步推导出未知(即结论)的逻辑演译过程〗,所以要证明命题【\(\lim n\in\mathbb{N}\)\(\implies\lim n\notin\mathbb{N}\)】,我们们必须从〖\(\lim n\in\mathbb{N}\)〗这个\(\color{red}{题设}\)条件出发,根据皮亚诺公理(犹其是皮亚诺公理第二条),去逻辑演译出\(\lim n\notin\mathbb{N}\)这个结论。所以,正确地演译应是〖若\(\lim n\in\mathbb{N}\)\(\implies\lim n+1\in\mathbb{N}\)(理论根据是皮亚诺公理第二条:每一个确定的自然数a,都有一个确定的后继数a'(=a+1),a'(=a+1)也是自然数.〗于是问题就转化成如\(m+1\)是不是自然数的问题。如果\(m+1\)是自然数(即皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)是否成立的问题)。
        现在我们证明命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        注意:我们在此\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)的基础上亦可证明\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……是自然数!证明的合理性请参见康托尔《超穷数理论基础》P75页第7—8行.
Elim,由问题的一般(项)通过极限的手段探测无穷,这是数学上常规有效方法,这种方法应用于一切步及极限动算的始终。所以你反对目测,其实质就是反对现行数学行之有效地论证方法。也因为elim反对目测,所以elim才有\(\displaystyle\lim_{n \to \infty}n=Sup\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=Max\mathbb{N}\)、……这样一些荒谬结论。
        elim纯粹数学是通过严谨的证明获得的,而不是靠耍流氓、耍无赖得到的。郑告民科领袖elim数学切忌撒谎,因为数学中没有戈陪尔效应,谎言千遍,仍是谎言!至此谁嗜吃屎,谁的【白痴真身被验明,孬贼船漏不打一处来】你固然不想承认,然网络诸友想必还是心中有数的!
回复 支持 反对

使用道具 举报

发表于 2025-11-6 11:58 | 显示全部楼层
elim 发表于 2025-11-6 04:03
滚驴见贴就滚见数学就反:丧心病狂.

楼上这些问题都是教科书处理的标准内容. 也见于我的帖子. 如


        【定理】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-11-6 17:52 | 显示全部楼层
elim 发表于 2025-11-6 16:28
滚驴见贴就滚见数学就反:丧心病狂.

楼上这些问题都是教科书处理的标准内容. 也见于我的帖子. 如


命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
回复 支持 反对

使用道具 举报

发表于 2025-11-11 06:19 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋只有后继(即极限序数),而\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直前,所以\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-12 19:26 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

发表于 2025-11-14 03:03 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-11-14 21:14 | 显示全部楼层
滚驴见贴就滚见数学就反:丧心病狂.

楼上这些问题都是教科书处理的标准内容. 也见于我的帖子. 如
【定义】称\(S\)的子集全体\(\mathscr{P}(S)=\{A\mid A\subset S\}\)为\(S\)的幂集.
【康托幂集定理】任意映射 \(f:S\to\mathscr{P}(S)\) 皆非满射.
【证明】命 \(A=\{x\in S\mid x\not\in f(x)\}\in\mathscr{P}(S)\). 若 \(f\) 为满射,
\(\qquad\qquad\)则有 \(\alpha\in S\) 使 \(f(\alpha)=A\).  据 \(A\) 的定义,
\(\qquad\qquad\)若 \(\alpha\in A\) 则 \(\alpha\not\in f(\alpha)=A;\)
\(\qquad\qquad\)若 \(\alpha\not\in A=f(\alpha),\) 则 \(\alpha \in A.\)
\(\qquad\qquad\)得到 \((\alpha\in A)\iff (\alpha \not\in A)\)  的矛盾!
\(\qquad\qquad\)故所论\(\alpha\)不存在, \(f^{-1}(A)=\varnothing,\;f\) 非滿射.

【注记】康托的这个定理与幂集公理一起,表明集与其幂集恒
\(\quad\)不对等,有无穷多不同的无穷基数.
\(\quad\)任何无穷基数都不是有限集的基数, 因而不是自然数
\(\quad\)排序 \(0,1,2,\ldots,\color{red}{\omega,\omega+1,\ldots,2\omega,\ldots,\omega^2,\ldots}\)
\(\quad\)中\(\omega\)之前的数皆是自然数, 之后的数(红色部分)皆非自然数.
\(\quad\)最小极限序数\(\omega=\sup\mathbb{N}=\lim n\not\in\mathbb{N}\).
\(\quad\,\mathbb{N}\)是无穷集. 由自然数即有限基数构成故\(|\mathbb{N}|=\aleph_0\not\in\mathbb{N}\).
\(\quad\)无穷集\(\mathbb{N}\)不含无穷大是一个不与集论公理,皮亚诺公理矛
\(\quad\)盾的事实(有限基数有无穷多).不足为怪


以下论证 \([0,1]\), \(\mathscr{P}(\mathbb{N})\) 对等. 故由上幂集定理\([0,1]\)不可数.

令 \(\mathscr{L}(\mathbb{N}_+)=\{A\in\{B,B^c\}:\;B\subset\mathbb{N}_+,\;0< |B|\in\mathbb{N}_+\}\)
易见(\(\mathbb{N}_+\)的有限子集及其补集全体) \(\mathscr{L}(\mathbb{N_+})\) 可数.
\(\bigg(A\mapsto \displaystyle\sum_{n\in\mathbb{N}_+}2^n\chi_A(n) \) 是\(\mathbb{N}_+\)的有限子集到\(\mathbb{N}\) 的单射.\(\bigg)\)
令 \(C_0 =  \displaystyle\{{\small\sum_{k=1}^\infty\frac{\chi_A(k)}{2^k}}\mid A\in\mathscr{L}(\mathbb{N}_+)\},\;C=[0,1)-C_0\)
\(\quad\)对 \(\alpha\in C,\;\;a_k=\lfloor 2^k\alpha\rfloor -2\lfloor 2^{k-1}\alpha\rfloor,\;(k=1,2,3,\ldots)\),
\(\quad\)因 \(2^{n-1}\alpha-\lfloor 2^{n-1}\alpha\rfloor< 1,\;\lfloor 2^k\alpha\rfloor -2\lfloor 2^{k-1}\alpha\rfloor\in\{0,1\}\)
\(\therefore\quad\displaystyle\sum_{n=1}^\infty\frac{a_n}{2^{n}}=\lim_{m\to\infty}\sum_{n=1}^m\big(\frac{\lfloor 2^n\alpha\rfloor}{2^n}-\frac{\lfloor 2^{n-1}\alpha\rfloor}{2^{n-1}}\big)\)
\(\qquad\displaystyle =\lim_{n\to\infty}\frac{\lfloor 2^n\alpha\rfloor}{2^n} =\lim_{n\to\infty}\frac{2^n\alpha-(2^n\alpha-\lfloor 2^n\alpha\rfloor) }{2^n} = \alpha\)
\(\therefore\quad \alpha\in C\) 与
\(A=\{n\in\mathbb{N}_+:\;\lfloor 2^n\alpha\rfloor -2\lfloor 2^{n-1}\alpha\rfloor = 1\}\in\small\mathscr{P}(\mathbb{N}_+)-\mathscr{L}(\mathbb{N}_+)\)
\(\qquad\)的关系是1-1对应.  故\(|\mathbb{R}|=|C|=|\mathscr{P}(\mathbb{N})-\mathscr{L}(\mathbb{N}_+)|=|\mathscr{P}(\mathbb{N})|=2^{\aleph_0}>\aleph_0\)
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-12-12 00:57 , Processed in 0.113923 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表