数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge\underset{m\to\infty}{\lim}(m+j)\textbf{ 的春氏定义为何?}\)

[复制链接]
发表于 2025-4-5 14:05 | 显示全部楼层

       elim经过一段时间(从2025年3月5日至2025年4月4日)的"潜心研究",终于在2025年4月5日08:19又重返论坛继续他的胡说八道。
       elim关于\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\)\(\quad (A_n:=\{m\in\mathbb{N}:m>n\})\),无论是根据北大周民强著《实变函数论》定义P9定义1.8还是定义1.9均可得到\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,……\}\)。所以elim要想证明\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\),需且只需证明\(v=\displaystyle\lim_{n \to \infty}n\)不存在!现在我们用反证法证明\(v=\displaystyle\lim_{n \to \infty}n\)是逻辑确定的客观存在的自然数。其证明如下:
       【证明:】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不存在,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不存在(否则\(v=\displaystyle\lim_{n→∞} n\)存在,这与\(v=\displaystyle\lim_{n→∞} n\)不存在的假设矛盾!)。逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不存在,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
       由于\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数,再根据皮亚诺公理第二条\(v=\displaystyle\lim_{n\to\infty} n\)的后继\(v+1=\displaystyle\lim_{n\to\infty}(n+1)\)也是逻辑确定的客观存在的自然数。类此\(v+j=\displaystyle\lim_{n\to\infty}(n+j)\)\( \quad j\in\mathbb{N}\)也是逻辑确定的客观存在的自然数!从而也就无矛盾的证明了 \(H_n{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n\ne\phi\)!
       其实elim既不懂无穷,也不懂自然数,更不懂什么叫着证明,全凭其打着维护现行数学幌子,骗得的一点可怜的信任,在论坛上死缠烂打,耍赖撒泼。那么什么叫做证明呢?现行数学是这样说的,所谓证明是指从命题的题设出发,根据已知的定义(如elim的单调递减集列\(\{A_n:=\{m\in\mathbb{N}:m>n\}\}\)的定义,单调集列极限集的定义)、公理(如自然数的皮亚诺公理)、定理,逐步推导出命题的结论的逻辑演绎过程。而elim则是与之相反。他海量的烂贴均是从\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数这个他期待的结果出发,去证明\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数。所以elim的一切胡说八道均为循环论证,除了欺骗他的粉丝,别无任何可取之处!

回复 支持 反对

使用道具 举报

发表于 2025-4-5 20:25 | 显示全部楼层

        elim关于\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\)\(\quad (A_n:=\{m\in\mathbb{N}:m>n\})\),无论是根据北大周民强著《实变函数论》定义P9定义1.8还是定义1.9均可得到\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,……\}\)。所以elim要想证明\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\),需且只需证明\(v=\displaystyle\lim_{n \to \infty}n\)不存在!现在我们用反证法证明\(v=\displaystyle\lim_{n \to \infty}n\)是逻辑确定的客观存在的自然数。其证明如下:
       【证明:】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不存在,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不存在(否则\(v=\displaystyle\lim_{n→∞} n\)存在,这与\(v=\displaystyle\lim_{n→∞} n\)不存在的假设矛盾!)。逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不存在,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
       由于\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数,再根据皮亚诺公理第二条\(v=\displaystyle\lim_{n\to\infty} n\)的后继\(v+1=\displaystyle\lim_{n\to\infty}(n+1)\)也是逻辑确定的客观存在的自然数。类此\(v+j=\displaystyle\lim_{n\to\infty}(n+j)\)\( \quad j\in\mathbb{N}\)也是逻辑确定的客观存在的自然数!从而也就无矛盾的证明了 \(H_n{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n\ne\phi\)!
       其实elim既不懂无穷,也不懂自然数,更不懂什么叫着证明,全凭其打着维护现行数学幌子,骗得的一点可怜的信任,在论坛上死缠烂打,耍赖撒泼。那么什么叫做证明呢?现行数学是这样说的,所谓证明是指从命题的题设出发,根据已知的定义(如elim的单调递减集列\(\{A_n:=\{m\in\mathbb{N}:m>n\}\}\)的定义,单调集列极限集的定义)、公理(如自然数的皮亚诺公理)、定理,逐步推导出命题的结论的逻辑演绎过程。而elim则是与之相反。他海量的烂贴均是从\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数这个他期待的结果出发,去证明\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数。所以elim的一切胡说八道均为循环论证,除了欺骗他的粉丝,别无任何可取之处!
.
回复 支持 反对

使用道具 举报

发表于 2025-4-10 13:53 | 显示全部楼层

elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-4-10 14:28 | 显示全部楼层
elim 发表于 2025-4-10 14:01
孬种说\(\displaystyle\lim_{m\to\infty}(m+j)\)与Weiestrass 极限定义
没关系。但始终给不出定义。原因 ...


elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-4-10 14:32 | 显示全部楼层
\(\{n\}\)是全体自然数所成的严格增序列,
其极限 \(v=\displaystyle\lim_{n\to\infty}n\)必大于序列的各项,
孬种自然数大于任一自然数故非自然数.
回复 支持 反对

使用道具 举报

发表于 2025-4-10 14:41 | 显示全部楼层
elim 发表于 2025-4-10 14:32
\(\{n\}\)是全体自然数所成的严格增序列,
其极限 \(v=\displaystyle\lim_{n\to\infty}n\)必大于序列的各项 ...


       elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-4-10 14:41 | 显示全部楼层
elim 发表于 2025-4-10 14:40
\(\displaystyle\lim_{n\to\infty}n\) 大于任意自然数所以它就不是自然数.
这么简单的道理,只有畜生不懂 ...


       elim,放你娘的臭狗屁!\(v=\displaystyle\lim_{n \to \infty}n\)就是自然数。其证明如下:
       【证明】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不是自然数,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不自然数(否则\(v=\displaystyle\lim_{n→∞} n\)是自然数,这与\(v=\displaystyle\lim_{n→∞} n\)不是自然数的假设矛盾!)逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不是自然数,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-4-10 14:52 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-4-10 17:33 编辑
elim 发表于 2025-4-10 14:41
令\(A_n=\{m\in\mathbb{N}: m> n\},\;N_{\infty}=\displaystyle\bigcap_{n=1}^\infty A_n\).
根据周民强 ...



        elim关于\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\)\(\quad (A_n:=\{m\in\mathbb{N}:m>n\})\),无论是根据北大周民强著《实变函数论》定义P9定义1.8还是定义1.9均可得到\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,……\}\)。所以elim要想证明\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\),需且只需证明\(v=\displaystyle\lim_{n \to \infty}n\)不存在!现在我们用反证法证明\(v=\displaystyle\lim_{n \to \infty}n\)是逻辑确定的客观存在的自然数。其证明如下:
       【证明:】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不存在,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不存在(否则\(v=\displaystyle\lim_{n→∞} n\)存在,这与\(v=\displaystyle\lim_{n→∞} n\)不存在的假设矛盾!)。逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不存在,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
       由于\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数,再根据皮亚诺公理第二条\(v=\displaystyle\lim_{n\to\infty} n\)的后继\(v+1=\displaystyle\lim_{n\to\infty}(n+1)\)也是逻辑确定的客观存在的自然数。类此\(v+j=\displaystyle\lim_{n\to\infty}(n+j)\)\( \quad j\in\mathbb{N}\)也是逻辑确定的客观存在的自然数!从而也就无矛盾的证明了 \(H_n{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n\ne\phi\)!
       其实elim既不懂无穷,也不懂自然数,更不懂什么叫着证明,全凭其打着维护现行数学幌子,骗得的一点可怜的信任,在论坛上死缠烂打,耍赖撒泼。那么什么叫做证明呢?现行数学是这样说的,所谓证明是指从命题的题设出发,根据已知的定义(如elim的单调递减集列\(\{A_n:=\{m\in\mathbb{N}:m>n\}\}\)的定义,单调集列极限集的定义)、公理(如自然数的皮亚诺公理)、定理,逐步推导出命题的结论的逻辑演绎过程。而elim则是与之相反。他海量的烂贴均是从\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数这个他期待的结果出发,去证明\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数。所以elim的一切胡说八道均为循环论证,除了欺骗他的粉丝,别无任何可取之处!
.
回复 支持 反对

使用道具 举报

发表于 2025-4-10 17:34 | 显示全部楼层


        elim关于\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\)\(\quad (A_n:=\{m\in\mathbb{N}:m>n\})\),无论是根据北大周民强著《实变函数论》定义P9定义1.8还是定义1.9均可得到\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,……\}\)。所以elim要想证明\(H_{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n=\phi\),需且只需证明\(v=\displaystyle\lim_{n \to \infty}n\)不存在!现在我们用反证法证明\(v=\displaystyle\lim_{n \to \infty}n\)是逻辑确定的客观存在的自然数。其证明如下:
       【证明:】反证法:若\(v=\displaystyle\lim_{n→∞} n\)不存在,则由皮亚诺公理第二条,\(v\)的前趋\(v-1\)也不存在(否则\(v=\displaystyle\lim_{n→∞} n\)存在,这与\(v=\displaystyle\lim_{n→∞} n\)不存在的假设矛盾!)。逆用皮亚诺公理\(v-1\)的前趋\(v-2\)也不是自然数,类此分析(k+1)的前趋k不存在,…,2的前趋1不是自然数,1的前趋0也不是自然数。所以自然数集\(\mathbb{N}=\phi\),这与\(\mathbb{N}≠\phi\)矛盾,所以\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数。【证毕】
       由于\(v=\displaystyle\lim_{n\to\infty} n\)是逻辑确定的客观存在的自然数,再根据皮亚诺公理第二条\(v=\displaystyle\lim_{n\to\infty} n\)的后继\(v+1=\displaystyle\lim_{n\to\infty}(n+1)\)也是逻辑确定的客观存在的自然数。类此\(v+j=\displaystyle\lim_{n\to\infty}(n+j)\)\( \quad j\in\mathbb{N}\)也是逻辑确定的客观存在的自然数!从而也就无矛盾的证明了 \(H_n{\infty}=\displaystyle\bigcap_{n =1}^{\infty}A_n\ne\phi\)!
       其实elim既不懂无穷,也不懂自然数,更不懂什么叫着证明,全凭其打着维护现行数学幌子,骗得的一点可怜的信任,在论坛上死缠烂打,耍赖撒泼。那么什么叫做证明呢?现行数学是这样说的,所谓证明是指从命题的题设出发,根据已知的定义(如elim的单调递减集列\(\{A_n:=\{m\in\mathbb{N}:m>n\}\}\)的定义,单调集列极限集的定义)、公理(如自然数的皮亚诺公理)、定理,逐步推导出命题的结论的逻辑演绎过程。而elim则是与之相反。他海量的烂贴均是从\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数这个他期待的结果出发,去证明\(v=\displaystyle\lim_{n\to\infty} n\)不是自然数。所以elim的一切胡说八道均为循环论证,除了欺骗他的粉丝,别无任何可取之处!
.
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-4-11 08:11 | 显示全部楼层
令\(A_n=\{m\in\mathbb{N}: m> n\},\;N_{\infty}=\displaystyle\bigcap_{n=1}^\infty A_n\).
根据周民强介绍的那点集论得
\(N_{\infty}=\small\displaystyle\big(\lim_{n\to\infty}A_n^c\big)^c=\big(\lim_{n\to\infty}\{m\in\mathbb{N}: m\le n\}\big)^c=\mathbb{N}^c=\varnothing\).

故孬种的\(N_{\infty}\ne\phi\)谬论都是妄图推翻周民强集论的诡辩
孬种的海量烂贴千头万绪, 归根结底是人太蠢, 种太孬,

不管孬种咋扑腾,它仍是个自捣自蛋反数学的蠢东西。


孬种始终给不出\(\underset{n\to\infty}{\lim}(n+j)\)的定义. 须知在
Weierstrass 意义下序列\(\{n+j\}\)发散.所以
敦促孬种给出某种广义极限的定义,适用于
所论序列.

孬种蠢疯说 \(\displaystyle\lim_{n\to\infty}(n+j)\)是\(\displaystyle\lim_{n\to\infty}(n+j-1)\)
的后继. 岂不知 \(\small\{n+j\},\{n+j-1\}\)都是\(\{n\}\)
的子序列, 其敛散性, 极限均相同. 孬种根本给
不出所论序列极限的定义, 明摆着白痴一个.


孬种具有用驴头不对马嘴的胡扯回贴的德性. 主贴
问题到现在半年了还答不了.这个畜生没理可说
时就说放你娘的臭狗屁,你根本不懂这个.. 不懂那个…


【注释】混世百年仍不知何谓集合交乃不可理喻,属既蠢又孬. 与之辩论  
\(\qquad\;\;\;\,\)如对驴弹琴. 明眼人一望便知的谬论不值一驳,评述与科普更妥.
\(\qquad\;\;\;\,\)数学白痴蠢疯顽瞎对集合, 映射,对等, 无穷, 自然数
\(\qquad\;\;\;\,\)等一系列数学基本概念持有全方位畜生不如的理解.
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-2 09:45 , Processed in 0.122114 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表