|

楼主 |
发表于 2010-1-24 10:01
|
显示全部楼层
[原创]三个奇素数和的分布
"童先生学识渊博,我是不如童先生的。
有一道小题不知童先生是否可以给个答案。
x+y+z=2009,x,y,z不能整除2,3,5,7这4个互质数(如果先生觉着容易,可以在加条件,难了可以去一个条件),x,y,z是自然数(如果现行的自然数包括0的话,它们也不能取0这个值),问在此种限制条件下,线性不定方程有多少组符合条件的解。"
上面的题藏着奇数歌猜的公式,只是限制条件少了,难度降低了,下面给出此题的计算公式:统一形式为:(at^2+bt+c)/2,t=INT[(n-1)/210]. a的值是可以预先计算的,当n能整除条件时,其合成方法因子为[(Pi-1)^3+1]/Pi-1=Pi^2-3Pi+2,不能整除条件时为[(Pi-1)^3+1]/Pi=Pi^2-3Pi+3,所以能整除2的合成法为0,不能整除2的合成法为1;能整除3的合成法为2,不能整除3的合成法为3;能整除5的合成法为12,不能整除5的合成法为13;能整除7的合成法为30,不能整除7的合成法为31;这4个条件可以把210类自然分成2^4=16种合成方法,实际上因为2有一类合成因子为0,这样就减去了一半的合成方法种类,偶数的合成方法都为0.余下的105种余数对应的公式的最高次项系数为各个单条件的乘积,只有一类数的余数可以整除所有的条件(除条件2外),那就是105,所以它的公式2次系数的值为1*2*12*30=720,这是最少的合成方法类数。所有的素数余数,包括1在内,公式中的最高次项的系数同一为1*3*13*31=1209.太多了。下面贴出公式中的a,b,c的值,这样查表就可以求出任何一个2n+1解的组数。
MOD(n,210)→(t^2+3t+2)/2→(t^2+t)/2→(t^2-t)/2→t^2→t→c
1→→→→→0→→→→→639→→→→570→→→→1209→69→0
3→→→→→1→→→→→421→→→→384→→→→806→40→2
5→→→→→0→→→→→585→→→→531→→→→1116→54→0
7→→→→→0→→→→→615→→→→555→→→→1170→60→0
9→→→→→0→→→→→424→→→→382→→→→806→42→0
11→→→→→0→→→→→687→→→→522→→→→1209→165→0
13→→→→→3→→→→→681→→→→525→→→→1209→165→6
15→→→→→3→→→→→423→→→→318→→→→744→114→6
17→→→→→0→→→→→702→→→→507→→→→1209→195→0
19→→→→→3→→→→→696→→→→510→→→→1209→195→6
21→→→→→3→→→→→474→→→→303→→→→780→180→6
23→→→→→3→→→→→738→→→→468→→→→1209→279→6
25→→→→→9→→→→→666→→→→441→→→→1116→252→18
27→→→→→3→→→→→490→→→→313→→→→806→186→6
29→→→→→6→→→→→747→→→→456→→→→1209→309→12
31→→→→→15→→→→→774→→→→420→→→→1209→399→30
33→→→→→10→→→→→516→→→→280→→→→806→266→20
35→→→→→12→→→→→696→→→→372→→→→1080→360→24
37→→→→→15→→→→→780→→→→414→→→→1209→411→30
39→→→→→10→→→→→517→→→→279→→→→806→268→20
41→→→→→21→→→→→810→→→→378→→→→1209→495→42
43→→→→→30→→→→→810→→→→369→→→→1209→531→60
45→→→→→18→→→→→498→→→→228→→→→744→324→36
47→→→→→24→→→→→819→→→→366→→→→1209→525→48
49→→→→→33→→→→→774→→→→363→→→→1170→510→66
51→→→→→25→→→→→558→→→→223→→→→806→410→50
53→→→→→36→→→→→846→→→→327→→→→1209→627→72
55→→→→→45→→→→→756→→→→315→→→→1116→576→90
57→→→→→28→→→→→562→→→→216→→→→806→430→56
59→→→→→45→→→→→843→→→→321→→→→1209→657→90
61→→→→→60→→→→→858→→→→291→→→→1209→747→120
63→→→→→36→→→→→558→→→→186→→→→780→480→72
65→→→→→57→→→→→786→→→→273→→→→1116→684→114
67→→→→→60→→→→→855→→→→294→→→→1209→741→120
69→→→→→40→→→→→570→→→→196→→→→806→494→80
71→→→→→78→→→→→882→→→→249→→→→1209→867→156
73→→→→→81→→→→→873→→→→255→→→→1209→861→162
75→→→→→54→→→→→531→→→→159→→→→744→534→108
77→→→→→81→→→→→843→→→→246→→→→1170→840→162
79→→→→→81→→→→→879→→→→249→→→→1209→873→162
81→→→→→66→→→→→592→→→→148→→→→806→642→132
83→→→→→99→→→→→888→→→→222→→→→1209→963→198
85→→→→→105→→→→→807→→→→204→→→→1116→918→210
87→→→→→70→→→→→594→→→→142→→→→806→662→140
89→→→→→105→→→→→891→→→→213→→→→1209→993→210
91→→→→→126→→→→→858→→→→186→→→→1170→1050→252
93→→→→→85→→→→→595→→→→126→→→→806→724→170
95→→→→→123→→→→→816→→→→177→→→→1116→1008→246
97→→→→→126→→→→→897→→→→186→→→→1209→1089→252
99→→→→→90→→→→→595→→→→121→→→→806→744→180
101→→→→→156→→→→→900→→→→153→→→→1209→1215→312
103→→→→→156→→→→→897→→→→156→→→→1209→1209→312
105→→→→→96→→→→→528→→→→96→→→→720→720→192
107→→→→→156→→→→→897→→→→156→→→→1209→1209→312
109→→→→→153→→→→→900→→→→156→→→→1209→1203→306
111→→→→→121→→→→→595→→→→90→→→→806→868→242
113→→→→→186→→→→→897→→→→126→→→→1209→1329→372
115→→→→→177→→→→→816→→→→123→→→→1116→1224→354
117→→→→→126→→→→→595→→→→85→→→→806→888→252
119→→→→→186→→→→→858→→→→126→→→→1170→1290→372
121→→→→→213→→→→→891→→→→105→→→→1209→1425→426
123→→→→→142→→→→→594→→→→70→→→→806→950→284
125→→→→→204→→→→→807→→→→105→→→→1116→1314→408
127→→→→→222→→→→→888→→→→99→→→→1209→1455→444
129→→→→→148→→→→→592→→→→66→→→→806→970→296
131→→→→→249→→→→→879→→→→81→→→→1209→1545→498
133→→→→→246→→→→→843→→→→81→→→→1170→1500→492
135→→→→→159→→→→→531→→→→54→→→→744→954→318
137→→→→→255→→→→→873→→→→81→→→→1209→1557→510
139→→→→→249→→→→→882→→→→78→→→→1209→1551→498
141→→→→→196→→→→→570→→→→40→→→→806→1118→392
143→→→→→294→→→→→855→→→→60→→→→1209→1677→588
145→→→→→273→→→→→786→→→→57→→→→1116→1548→546
147→→→→→186→→→→→558→→→→36→→→→780→1080→372
149→→→→→291→→→→→858→→→→60→→→→1209→1671→582
151→→→→→321→→→→→843→→→→45→→→→1209→1761→642
153→→→→→216→→→→→562→→→→28→→→→806→1182→432
155→→→→→315→→→→→756→→→→45→→→→1116→1656→630
157→→→→→327→→→→→846→→→→36→→→→1209→1791→654
159→→→→→223→→→→→558→→→→25→→→→806→1202→446
161→→→→→363→→→→→774→→→→33→→→→1170→1830→726
163→→→→→366→→→→→819→→→→24→→→→1209→1893→732
165→→→→→228→→→→→498→→→→18→→→→744→1164→456
167→→→→→369→→→→→810→→→→30→→→→1209→1887→738
169→→→→→378→→→→→810→→→→21→→→→1209→1923→756
171→→→→→279→→→→→517→→→→10→→→→806→1344→558
173→→→→→414→→→→→780→→→→15→→→→1209→2007→828
175→→→→→372→→→→→696→→→→12→→→→1080→1800→744
177→→→→→280→→→→→516→→→→10→→→→806→1346→560
179→→→→→420→→→→→774→→→→15→→→→1209→2019→840
181→→→→→456→→→→→747→→→→6→→→→1209→2109→912
183→→→→→313→→→→→490→→→→3→→→→806→1426→626
185→→→→→441→→→→→666→→→→9→→→→1116→1980→882
187→→→→→468→→→→→738→→→→3→→→→1209→2139→936
189→→→→→303→→→→→474→→→→3→→→→780→1380→606
191→→→→→510→→→→→696→→→→3→→→→1209→2223→1020
193→→→→→507→→→→→702→→→→0→→→→1209→2223→1014
195→→→→→318→→→→→423→→→→3→→→→744→1374→636
197→→→→→525→→→→→681→→→→3→→→→1209→2253→1050
199→→→→→522→→→→→687→→→→0→→→→1209→2253→1044
201→→→→→382→→→→→424→→→→0→→→→806→1570→764
203→→→→→555→→→→→615→→→→0→→→→1170→2280→1110
205→→→→→531→→→→→585→→→→0→→→→1116→2178→1062
207→→→→→384→→→→→421→→→→1→→→→806→1572→768
209→→→→→570→→→→→639→→→→0→→→→1209→2349→1140
MOD(2009,210)=119,t=INT[(2009-1)/210]=9.所以2009的解组数为余数119对应的公式,把t用9代替后的值。Z(2009)=(1170*t^2+1290*t+372)/2=(1170*9^2+1290*9+372)/2=53376
|
|