数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: jzkyllcjl

关于自然数的一个定理

[复制链接]
发表于 2009-9-22 16:42 | 显示全部楼层

关于自然数的一个定理

下面引用由wangyangke2009/09/22 04:40pm 发表的内容:
人“蠢”就安静些嘛,没有人硬要“蠢货”( ygq的马甲  )你出来的。“蠢货”( ygq的马甲  )你有功夫来“鹦鹉学舌”,用点功夫来【创新】嘛
【鉴定】和【评估】结论是:“无知者无畏”式的“蠢货”( wangyangke )
按照“物以类聚、人以群分”的【分类】方法,“蠢货”( wangyangke )与“蠢货”(申一言)、“蠢货”(jzkyllcjl)归类在一起的
发表于 2009-9-22 16:44 | 显示全部楼层

关于自然数的一个定理

人“蠢”就安静些嘛,没有人硬要“蠢货”( ygq的马甲  )你出来的。“蠢货”( ygq的马甲  )你有功夫来“鹦鹉学舌”,用点功夫来【创新】嘛
发表于 2009-9-22 17:20 | 显示全部楼层

关于自然数的一个定理

下面引用由wangyangke2009/09/22 04:44pm 发表的内容:
人“蠢”就安静些嘛,没有人硬要“蠢货”( ygq的马甲  )你出来的。“蠢货”( ygq的马甲  )你有功夫来“鹦鹉学舌”,用点功夫来【创新】嘛
【鉴定】和【评估】结论是:“无知者无畏”式的“蠢货”(wangyangke)
“蠢货”(wangyangke)你的【创新】,难道就是“鹦鹉学舌” ???
 楼主| 发表于 2009-9-23 09:15 | 显示全部楼层

关于自然数的一个定理

马甲说:【枚举法】验证,懂不懂???
那么就请马甲去验证吧!
发表于 2009-9-23 09:31 | 显示全部楼层

关于自然数的一个定理

下面引用由jzkyllcjl2009/09/23 09:15am 发表的内容:
马甲说:【枚举法】验证,懂不懂???
那么就请马甲去验证吧!
【鉴定】和【评估】结论是:“无知者无畏”式的“蠢货”(jzkyllcjl)
“蠢货”(jzkyllcjl)你究竟懂不懂“谁主张、谁举证”的原则 ???[br][br]-=-=-=-=- 以下内容由 ygq的马甲 时添加 -=-=-=-=-

居然还是从事一辈子“数学”专业的人士,连基本的【规矩】都不懂
 楼主| 发表于 2009-9-23 17:08 | 显示全部楼层

关于自然数的一个定理

[这个贴子最后由jzkyllcjl在 2009/09/23 05:10pm 第 1 次编辑]

定理就是我的主张,证明已经有了!完全符合传统数学的规矩!应用也有了!《无理数的本源性表达式与一个新实数》的帖子就是这个定理的应用!http://www.mathchina.com/cgi-bin/topic.cgi?forum=5&topic=7604&show=25
发表于 2009-9-23 17:34 | 显示全部楼层

关于自然数的一个定理

下面引用由jzkyllcjl2009/09/23 05:08pm 发表的内容:
定理就是我的主张,证明已经有了!完全符合传统数学的规矩!应用也有了!《无理数的本源性表达式与一个新实数》的帖子就是这个定理的应用!http://www.mathchina.com/cgi-bin/topic.cgi?forum=5&topic=7604& ...
【鉴定】和【评估】结论是:“无知者无畏”式的“蠢货”(jzkyllcjl)
“蠢货”(jzkyllcjl)你,能否给出哪一个人【写】了接近“无穷大∞”的自然数了 ???【枚举法】验证,懂不懂???
[quote]定理1 ①任意大自然数是能够被人们写出的自然数;……[/quuote]
 楼主| 发表于 2009-9-24 11:40 | 显示全部楼层

关于自然数的一个定理

第一,你要求的事情与1楼的定理无关!
第二,对你提出的问题,你需要把问题明确起来!即你需要指出“什么叫接近”?什么是无穷大∞?
发表于 2009-9-24 12:10 | 显示全部楼层

关于自然数的一个定理

下面引用由jzkyllcjl2009/09/24 11:40am 发表的内容:
第一,你要求的事情与1楼的定理无关!
第二,对你提出的问题,你需要把问题明确起来!即你需要指出“什么叫接近”?什么是无穷大∞?
【鉴定】和【评估】结论是:“无知者无畏”式的“蠢货”(jzkyllcjl)
“蠢货”(jzkyllcjl)你说“无关”就“无关”了 ???
【枚举法】验证,懂不懂???
 楼主| 发表于 2009-9-25 08:17 | 显示全部楼层

关于自然数的一个定理

第一你想用已有的枚举法说明,那是你的事,与我无关!我1楼的定理是证明了的!
第二,对你提出的问题,你需要把问题明确起来!即你需要指出“什么叫接近”?什么是无穷大∞?
这第二个问题你怎么不回答呢?
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2026-1-15 04:50 , Processed in 0.087864 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表