|
本帖最后由 愚工688 于 2022-2-19 09:26 编辑
同样以楼主开始的日期20220218为起点的连续51个偶数的素对下界计算值,看看计算值精度jd怎么样:
G(20220218) = 57166; inf( 20220218 )≈ 56574.4 , jd ≈0.9896,infS(m) = 52927.28 ,
G(20220220) = 75764; inf( 20220220 )≈ 74789.0 , jd ≈0.9871,infS(m) = 52927.28 ,
G(20220222) = 119030;inf( 20220222 )≈ 117616.2 , jd ≈0.9881,infS(m) = 52927.29 ,
G(20220224) = 53898; inf( 20220224 )≈ 53236.9 , jd ≈0.9877,infS(m) = 52927.29 ,
G(20220226) = 58823; inf( 20220226 )≈ 57888.7 , jd ≈0.9841,infS(m) = 52927.3 ,
G(20220228) = 128685;inf( 20220228 )≈ 127025.5 , jd ≈0.9871,infS(m) = 52927.3 ,
G(20220230) = 71464; inf( 20220230 )≈ 70669.6 , jd ≈0.9889,infS(m) = 52927.31 ,
G(20220232) = 55255; inf( 20220232 )≈ 54408.2 , jd ≈0.9847,infS(m) = 52927.31 ,
G(20220234) = 110727;inf( 20220234 )≈ 109295.3 , jd ≈0.9871,infS(m) = 52927.32 ,
G(20220236) = 53711; inf( 20220236 )≈ 52927.3 , jd ≈0.9854,infS(m) = 52927.32 , k(m)= 1
G(20220238) = 53543; inf( 20220238 )≈ 52927.3 , jd ≈0.9885,infS(m) = 52927.33 , k(m)= 1
G(20220240) = 144251;inf( 20220240 )≈ 142257.7 , jd ≈0.9862,infS(m) = 52927.33 ,
G(20220242) = 70536; inf( 20220242 )≈ 69379.7 , jd ≈0.9836,infS(m) = 52927.34 ,
G(20220244) = 60741; inf( 20220244 )≈ 59839.9 , jd ≈0.9852,infS(m) = 52927.34 ,
G(20220246) = 113851;inf( 20220246 )≈ 112377.3 , jd ≈0.9871,infS(m) = 52927.35 ,
G(20220248) = 53945; inf( 20220248 )≈ 53100.9 , jd ≈0.9844,infS(m) = 52927.35 ,
G(20220250) = 74293; inf( 20220250 )≈ 73209.8 , jd ≈0.9854,infS(m) = 52927.36 ,
G(20220252) = 117478;inf( 20220252 )≈ 116195 , jd ≈0.9891,infS(m) = 52927.36 ,
G(20220254) = 53760; inf( 20220254 )≈ 53013.2 , jd ≈0.9861,infS(m) = 52927.37 ,
G(20220256) = 68154; inf( 20220256 )≈ 67248.9 , jd ≈0.9867,infS(m) = 52927.38 ,
G(20220258) = 107510;inf( 20220258 )≈ 105854.8 , jd ≈0.9846,infS(m) = 52927.38 ,
G(20220260) = 71647 ;inf( 20220260 )≈ 70569.9 , jd ≈0.9850,infS(m) = 52927.39 ,
G(20220262) = 53796; inf( 20220262 )≈ 52927.4 , jd ≈0.9838,infS(m) = 52927.39 ,
G(20220264) = 107493;inf( 20220264 )≈ 105854.8 , jd ≈0.9848,infS(m) = 52927.4 ,
G(20220266) = 63074; inf( 20220266 )≈ 62456.2 , jd ≈0.9902,infS(m) = 52927.4 ,
G(20220268) = 53799; inf( 20220268 )≈ 52927.4 , jd ≈0.9838,infS(m) = 52927.41 ,
G(20220270) = 174316;inf( 20220270 )≈ 171883.6 , jd ≈0.9860,infS(m) = 52927.41 ,
G(20220272) = 53543; inf( 20220272 )≈ 52927.4 , jd ≈0.9838,infS(m) = 52927.42 ,
G(20220274) = 53780; inf( 20220274 )≈ 52927.4 , jd ≈0.9841,infS(m) = 52927.42 ,
G(20220276) = 114599;inf( 20220276 )≈ 112911.9 , jd ≈0.9853,infS(m) = 52927.43 ,
G(20220278) = 60055; inf( 20220278 )≈ 59388.7 , jd ≈0.9889,infS(m) = 52927.43 ,
G(20220280) = 72855; inf( 20220280 )≈ 71766.0 , jd ≈0.9851,infS(m) = 52927.44 ,
G(20220282) = 107192;inf( 20220282 )≈ 105854.9 , jd ≈0.9875,infS(m) = 52927.44 ,
G(20220284) = 64387; inf( 20220284 )≈ 63512.9 , jd ≈0.9864,infS(m) = 52927.45 ,
G(20220286) = 53654; inf( 20220286 )≈ 52927.5 , jd ≈0.9865,infS(m) = 52927.45 ,
G(20220288) = 119403;inf( 20220288 )≈ 117616.6 , jd ≈0.9850,infS(m) = 52927.46 ,
G(20220290) = 71662; inf( 20220290 )≈ 70570.0 , jd ≈0.9848,infS(m) = 52927.46 ,
G(20220292) = 53542; inf( 20220292 )≈ 53047.5 , jd ≈0.9908,infS(m) = 52927.47 ,
G(20220294) = 114968;inf( 20220294 )≈ 113518.6 , jd ≈0.9874,infS(m) = 52927.47 ,
G(20220296) = 53806; inf( 20220296 )≈ 52927.5 , jd ≈0.9837,infS(m) = 52927.48 ,
G(20220298) = 66052; inf( 20220298 )≈ 65141.5 , jd ≈0.9862,infS(m) = 52927.49 ,
G(20220300) = 143085;inf( 20220300 )≈ 141140 , jd ≈0.9864,infS(m) = 52927.49 ,
G(20220302) = 53780; inf( 20220302 )≈ 53167 , jd ≈0.9886,infS(m) = 52927.5 ,
G(20220304) = 58616; inf( 20220304 )≈ 57739.1 , jd ≈0.9850,infS(m) = 52927.5 ,
G(20220306) = 107178;inf( 20220306 )≈ 105855 , jd ≈0.9877,infS(m) = 52927.51 ,
G(20220308) = 57539; inf( 20220308 )≈ 56780.5 , jd ≈0.9868,infS(m) = 52927.51 ,
G(20220310) = 84878; inf( 20220310 )≈ 83723.8 , jd ≈0.9864,infS(m) = 52927.52 ,
G(20220312) = 134996;inf( 20220312 )≈ 133074.9 , jd ≈0.9858,infS(m) = 52927.52 ,
G(20220314) = 53784; inf( 20220314 )≈ 52927.5 , jd ≈0.9841,infS(m) = 52927.53 ,
G(20220316) = 53868; inf( 20220316 )≈ 53075.8 , jd ≈0.9853,infS(m) = 52927.53 ,
G(20220318) = 107370;inf( 20220318 )≈ 105855.1 , jd ≈0.9859,infS(m) = 52927.54 ,
time start =15:53:49 ,time end =15:54:00 ,
可以发现,偶数素对的区域下界计算值,infS(m)是随着偶数的增大而缓慢的增大的,这就保证了任意大偶数的素对素对数量的下限是越来越多的。
顺便说明,我的下界计算式是采用素数连乘式计算的。
计算式摘录:
inf( 20220218 ) = 1/(1+ .12 )*( 20220218 /2 -2)*p(m) ≈ 56574.4
inf( 20220220 ) = 1/(1+ .12 )*( 20220220 /2 -2)*p(m) ≈ 74789
inf( 20220222 ) = 1/(1+ .12 )*( 20220222 /2 -2)*p(m) ≈ 117616.2
inf( 20220224 ) = 1/(1+ .12 )*( 20220224 /2 -2)*p(m) ≈ 53236.9
inf( 20220226 ) = 1/(1+ .12 )*( 20220226 /2 -2)*p(m) ≈ 57888.7
……
inf( 20220310 ) = 1/(1+ .12 )*( 20220310 /2 -2)*p(m) ≈ 83723.8
inf( 20220312 ) = 1/(1+ .12 )*( 20220312 /2 -2)*p(m) ≈ 133074.9
inf( 20220314 ) = 1/(1+ .12 )*( 20220314 /2 -2)*p(m) ≈ 52927.5
inf( 20220316 ) = 1/(1+ .12 )*( 20220316 /2 -2)*p(m) ≈ 53075.8
inf( 20220318 ) = 1/(1+ .12 )*( 20220318 /2 -2)*p(m) ≈ 105855.1
p(m)——素数连乘式,每个偶数的连乘式与它含有的素因子的不同而变化;
1/(1+ .12 )——一定范围内偶数的素对计算值采用的同一的修正系数;
|
|