|

楼主 |
发表于 2024-8-8 23:41
|
显示全部楼层
\([0,1]\) 是不可数无穷集: 首先它是无穷集:\(\;\{\frac{1}{n}\mid n\in\mathbb{N}^+\}\subset[0,1]\);
其次它不是可数无穷集: 否则, \([0,1]\)的元素可排成不重不漏的序列\(x_1,x_2,x_3.\ldots\)
令\(I_0=[0,1],\,I_1\)是\(I_0\)的3个三等分相邻闭子区间中第一个不含\(x_1\)的子区间,
假定闭子区间\(I_1\supset I_2\supset\cdots\supset I_{n-1},\,x_k\not\in I_k,\,k=\overline{1,n-1}\)已取定,
取第一个不含\(x_n\)的\(I_{n-1}\)的三等分相邻闭子区间为\(I_n\). 易见区间 \(I_n\)长\(3^{-n}\),
据区间套定理,存在一实数 \(\xi\in\bigcap_{n=1}^\infty I_n\subset [0,1]\), 但排列\(x_1,x_2,x_3,\ldots\)
不含\(\xi\). 这个矛盾是假定\([0,1]\)可数引起的. 所以\([0,1]\) 不可数. |
|