|

楼主 |
发表于 2011-1-11 22:26
|
显示全部楼层
[原创]哥德巴赫猜想真理性之证明
各位网友;有人说“哥猜是无解命题”;有人说“哥猜是规律,规律只能认识,不能证明”;还有人说“哥猜命题的证明采用数学归纳法。这绝对是行不通的!!”。
我以为,那只是他们个人的主观认识,并非客观实际。我的命题:形如2(n+2)能够找到一个不大于n的正整数m使得2(n+2)={1+2m}(素数}+{3+2(n-m)}(素数)成立,正是我在理论上对客观实际的描述,那么的简洁明了,甚至高中生都看得懂。说白了就是:只要您给定一个不小于6的偶数,我就能使之可表二奇素数之和。哥猜无反例就是我上述理论的依据。我的这个哥猜命题,其唯一的证明方法就是数学归纳法。当然不是普通的归纳法,而是经过改进创新的”马氏分流归纳法“该法不违数学归纳法定理的规范。将集N+分解为CN+{2ij+i+j/i,j∈N+}和{2ij+i+j/i,j∈N+}不相交而互补的两个子集,是”马氏分流归纳法“的理论基础。绝对是"新思想新方法”,见所未见,闻所未闻。请详见《哥德巴赫猜想真理性之证明》一文。正因为我的论文是新生事物,人们一时不理解是很正常的。但我坚信,只要不是自以为是而是尊重客观、理性思维的人士,就会很快理解的。
注释:集{2ij+i+j/i,j∈N+}={4,7,10,12,13,16,17,19,...};集CN+{2ij+i+j/i,j∈N+}={1,2,3,5,6,8,9,11,14,...};集N+={1,2,3,4,5,6,7,8,9,...}。
谢谢。 |
|